Description Usage Arguments Value References See Also Examples
This function computes the log-likelihood of multiple observed sequences generated by a hidden Markov model with fixed parameters.
1 | loglikelihood(hmm, sequences)
|
hmm |
a list with the necessary variables to define a hidden Markov model. |
sequences |
sequences of observations to be evaluated. HMM and PHMM use a matrix. GHMM uses a 3D array. |
A value that represents the log-likelihood of the multiple observed sequences given the hiddden Markov model. HMM and PHMM use a matrix with different sequences as rows and consecutive observations in the columns. GHMM uses an array with the variables as rows, consecutive observations in the columns and different sequences as slices.
Cited references are listed on the RcppHMM manual page.
generateObservations
, verifyModel
, evaluation
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 | ## Values for a hidden Markov model with categorical observations
# Set the model parameters
n <- c("First","Second")
m <- c("A","T","C","G")
A <- matrix(c(0.8,0.2,
0.1,0.9),
nrow = 2,
byrow = TRUE)
B <- matrix(c(0.2, 0.2, 0.3, 0.3,
0.4, 0.4, 0.1, 0.1),
nrow = 2,
byrow = TRUE)
Pi <- c(0.5, 0.5)
params <- list( "Model" = "HMM",
"StateNames" = n,
"ObservationNames" = m,
"A" = A,
"B" = B,
"Pi" = Pi)
HMM <- verifyModel(params)
# Data simulation
set.seed(100)
length <- 100
seqs <- 10
# Multiple sequences to be evaluated
observationSequences<- c()
for(i in 1:seqs){
Y <- generateObservations(HMM , length)$Y
observationSequences <- rbind(observationSequences , Y)
}
dim(observationSequences)
#Sequences evaluation
loglikelihood(HMM, observationSequences)
## Values for a hidden Markov model with discrete observations
n <- c("Low","Normal","High")
A <- matrix(c(0.5, 0.3,0.2,
0.2, 0.6, 0.2,
0.1, 0.3, 0.6),
ncol=length(n), byrow=TRUE)
B <- c(2600, # First distribution with mean 2600
2700, # Second distribution with mean 2700
2800) # Third distribution with mean 2800
Pi <- rep(1/length(n), length(n))
HMM.discrete <- verifyModel(list("Model"="PHMM", "StateNames" = n, "A" = A, "B" = B, "Pi" = Pi))
# Data simulation
set.seed(100)
length <- 100
seqs <- 10
# Multiple sequences to be evaluated
observationSequences<- c()
for(i in 1:seqs){
Y <- generateObservations(HMM.discrete , length)$Y
observationSequences <- rbind(observationSequences , Y)
}
dim(observationSequences)
#Sequences evaluation
loglikelihood(HMM.discrete, observationSequences)
## Values for a hidden Markov model with continuous observations
# Number of hidden states = 3
# Univariate gaussian mixture model
N = c("Low","Normal", "High")
A <- matrix(c(0.5, 0.3,0.2,
0.2, 0.6, 0.2,
0.1, 0.3, 0.6),
ncol= length(N), byrow = TRUE)
Mu <- matrix(c(0, 50, 100), ncol = length(N))
Sigma <- array(c(144, 400, 100), dim = c(1,1,length(N)))
Pi <- rep(1/length(N), length(N))
HMM.cont.univariate <- verifyModel(list( "Model"="GHMM",
"StateNames" = N,
"A" = A,
"Mu" = Mu,
"Sigma" = Sigma,
"Pi" = Pi))
# Data simulation
set.seed(100)
length <- 100
seqs <- 10
# Multiple sequences to be evaluated
observationSequences<- array(0, dim = c(1, length, seqs) )
for(i in 1:seqs){
Y <- generateObservations(HMM.cont.univariate , length)$Y
observationSequences[,,i] <- Y
}
dim(observationSequences)
#Sequences evaluation
loglikelihood(HMM.cont.univariate, observationSequences)
## Values for a hidden Markov model with continuous observations
# Number of hidden states = 2
# Multivariate gaussian mixture model
# Observed vector with dimensionality of 3
N = c("X1","X2")
M <- 3
# Same number of dimensions
Sigma <- array(0, dim =c(M,M,length(N)))
Sigma[,,1] <- matrix(c(1.0,0.8,0.8,
0.8,1.0,0.8,
0.8,0.8,1.0), ncol = M,
byrow = TRUE)
Sigma[,,2] <- matrix(c(1.0,0.4,0.6,
0.4,1.0,0.8,
0.6,0.8,1.0), ncol = M,
byrow = TRUE)
Mu <- matrix(c(0, 5,
10, 0,
5, 10),
nrow = M,
byrow = TRUE)
A <- matrix(c(0.6,0.4,
0.3, 0.7),
ncol = length(N),
byrow = TRUE)
Pi <- c(0.5, 0.5)
HMM.cont.multi <- verifyModel(list( "Model" = "GHMM",
"StateNames" = N,
"A" = A,
"Mu" = Mu,
"Sigma" = Sigma,
"Pi" = Pi))
# Data simulation
set.seed(100)
length <- 100
seqs <- 10
# Multiple sequences to be evaluated
observationSequences<- array(0, dim = c(M, length, seqs) )
for(i in 1:seqs){
Y <- generateObservations(HMM.cont.multi , length)$Y
observationSequences[,,i] <- Y
}
dim(observationSequences)
#Sequences evaluation
loglikelihood(HMM.cont.multi, observationSequences)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.