Nothing
#' @title dE.single - Estimate single-observer line-transect distance function
#'
#' @description Fits a detection function to off-transect
#' distances collected by a single observer.
#'
#' @inheritParams dfuncEstim
#'
#' @param formula A standard formula object. For example, \code{dist ~ 1},
#' \code{dist ~ covar1 + covar2}). The left-hand side (before \code{~})
#' is the name of the vector containing off-transect or radial detection distances.
#' The right-hand side contains the names of covariate
#' vectors to fit in the detection
#' function, and potentially group sizes.
#' Covariates can be either detection level
#' or transect level and can appear in \code{data} or exist in the
#' global working environment. Regular R scoping
#' rules apply.
#'
#'
#' @param likelihood String specifying the likelihood to fit. Built-in
#' likelihoods at present are "halfnorm", "hazrate", and "negexp".
#'
#' @param w.lo Lower or left-truncation limit of the distances in distance data.
#' This is the minimum possible off-transect distance. Default is 0. If
#' \code{w.lo} is greater than 0, it must be assigned measurement units
#' using \code{units(w.lo) <- "<units>"} or
#' \code{w.lo <- units::set_units(w.lo, "<units>")}.
#' See examples in the help for \code{set_units}.
#'
#' @param w.hi Upper or right-truncation limit of the distances
#' in \code{dist}. This is the maximum off-transect distance that
#' could be observed. If unspecified (i.e., NULL),
#' right-truncation is set to the maximum of the observed
#' distances. If \code{w.hi} is specified, it must have associated
#' measurement units. Assign measurement units
#' using \code{units(w.hi) <- "<units>"} or
#' \code{w.hi <- units::set_units(w.hi, "<units>")}.
#' See examples in the help for \code{set_units}.
#'
#' @param expansions A scalar specifying the number of terms
#' in \code{series} to compute. Depending on the series,
#' this could be 0 through 5. The default of 0 equates
#' to no expansion terms of any type. No expansion terms
#' are allowed (i.e., \code{expansions} is forced to 0) if
#' covariates are present in the detection function
#' (i.e., right-hand side of \code{formula} includes
#' something other than \code{1}).
#'
#' @param series If \code{expansions} > 0, this string
#' specifies the type of expansion to use. Valid values at
#' present are 'simple', 'hermite', and 'cosine'.
#'
#' @param x.scl The x coordinate (a distance) at which the
#' detection function will be scaled. \code{g.x.scl} can be a distance
#' or the string "max".
#' When \code{x.scl} is specified (i.e., not 0 or "max"), it must have measurement
#' units assigned using either \code{library(units);units(x.scl) <- '<units>'}
#' or \code{x.scl <- units::set_units(x.scl, <units>)}. See
#' \code{units::valid_udunits()} for valid symbolic units.
#'
#' @param g.x.scl Height of the distance function at coordinate \code{x}.
#' The distance function
#' will be scaled so that g(\code{x.scl}) = \code{g.x.scl}.
#' If \code{g.x.scl} is not
#' a data frame, it must be a numeric value (vector of length 1)
#' between 0 and 1.
#'
#' @param warn A logical scalar specifying whether to issue
#' an R warning if the estimation did not converge or if one
#' or more parameter estimates are at their boundaries.
#' For estimation, \code{warn} should generally be left at
#' its default value of \code{TRUE}. When computing bootstrap
#' confidence intervals, setting \code{warn = FALSE}
#' turns off annoying warnings when an iteration does
#' not converge. Regardless of \code{warn}, after
#' completion all messages about
#' convergence and boundary conditions are printed
#' by \code{print.dfunc}, \code{print.abund}, and
#' \code{plot.dfunc}.
#'
#' @param outputUnits A string specifying the symbolic measurement
#' units for results. Valid units are listed in \code{units::valid_udunits()}.
#' The strings for common distance symbolic units are:
#' "m" - meters, "ft" - feet, "cm" - centimeters, "mm" -
#' millimeters, "mi" - miles, "nmile" -
#' nautical miles ("nm" is nano meters), "in" - inches,
#' "yd" - yards, "km" - kilometers, "fathom" - fathoms,
#' "chains" - chains, and "furlong" - furlongs.
#' If \code{outputUnits} is unspecified (NULL),
#' output units will be the same as those on
#' distances in \code{data}.
#'
#'
#' @section Group Sizes:
#' To specify non-unity group sizes, use \code{groupsize()}
#' on the RHS of \code{formula}. When group sizes are not all 1, they must appear in a column
#' of the 'detections' list-column of \code{data}.
#' For example, \code{d ~ habitat + groupsize(number)} specifies
#' distances in column \code{d}, one covariate
#' named \code{habitat}, and that column \code{number}
#' contains the number of individuals
#' associated with each detection. If group sizes are not specified,
#' all group sizes are assumed to be 1.
#'
#' @section Contrasts:
#' Factor contrasts in \code{Rdistance} are specified
#' the same way as in \code{lm} or \code{glm}.
#' By default, \code{Rdistance} uses
#' contrasts in \code{getOption("contrasts")}. To change contrasts, use a statement
#' like \code{options(contrasts = c(unordered = "contr.SAS",
#' ordered = "contr.poly"))}. Or, to set contrasts for a
#' specific factor in the input data frame, use
#' \code{contrasts(df$A) <- "contr.sum"} or similar.
#' See \code{\link{contrasts}} or the \code{contrasts.arg}
#' of \code{\link{model.matrix}}.
#'
#' @section Transect types:
#' \code{Rdistance} accommodates two kinds of transects: continuous and point.
#' Detections can occur at any point on continuous transects.
#' \code{Rdistance} calls these 'line-transects' even though routes are not
#' necessarily a straight line.
#' On point transects, detections occur at a series of stops
#' (points). \code{Rdisance} calls these point-transects. Transects are the basic
#' sampling unit in both cases. \code{Rdistance} assumes each row of \code{data}
#' contains information from one transect. See \code{\link{RdistDf}} for
#' more details.
#'
#' @section Measurement Units:
#' As of \code{Rdistance} version 3.0.0, measurement units are
#' require on all physical distances.
#' Requiring units ensures that internal calculations and results
#' (e.g., ESW and abundance) are correct
#' and that output units are clear.
#' Physical distances are required on
#' off-transect distances, radial distances, truncation distances
#' (\code{w.lo}, unless it is zero; and \code{w.hi}, unless it is NULL),
#' scale locations (\code{x.scl}, unless it is zero),
#' line-transect lengths, and study area size. All units are
#' 1-dimensional except those on study area, which are 2-dimensional.
#'
#' Physical measurement units can vary. For example,
#' off-transect distances can be meters ("m"), \code{w.hi} can be inches ("in"),
#' and \code{w.lo} can be kilometers ("km"). Internally, all distances are
#' converted to the units specified by \code{outputUnits}
#' (or the units of input distances if
#' \code{outputUnits} is NULL), and
#' all output is reported
#' in units of \code{outputUnits}. Valid conversions must exist between
#' units or an error is thrown. For example, meters cannot be converted
#' into hectares.
#'
#' Measurement units can be assigned using
#' \code{units()<-} after attaching the \code{units}
#' package or with \code{x <- units::set_units(x, "<units>")}.
#' See \code{units::valid_udunits()}
#' for a list of valid symbolic units.
#'
#' If measurements are truly unit-less, or measurement units are unknown,
#' set \code{options(Rdist_requireUnits = FALSE)}. This suppresses
#' all unit checks and conversions. Users are on their own
#' to make sure inputs are scaled correctly and that output units are known.
#'
#' @details
#' Optimization and estimation controls can be modified using \code{options()}.
#' See \code{\link{RdistanceControls}}.
#'
#' @return An object of class 'dfunc'. Objects of class 'dfunc'
#' are lists containing the following components:
#'
#' \item{par}{The vector of estimated parameter values.
#' Length of this vector for built-in likelihoods is one
#' (for the function's parameter) plus the
#' number of expansion terms plus one if the likelihood is
#' 'hazrate' (which has
#' two parameters). }
#'
#' \item{varcovar}{The variance-covariance matrix for coefficients
#' of the distance function, estimated by the inverse of the fit's Hessian
#' evaluated at the estimates. Rdistance estimates the
#' Hessian as the second derivative of the log likelihood surface
#' at the final estimates, where second derivatives are estimated by
#' numeric differentiation (see \code{\link{secondDeriv}}. There is no guarantee this
#' matrix is positive-definite and should be viewed with caution.
#' Error estimates derived from bootstrapping are generally
#' more reliable. I.e., re-compute coefficient confidence intervals
#' using the bootstrap values in component \code{$B} of an abundance object.}
#'
#' \item{loglik}{The maximized value of the log likelihood.}
#'
#' \item{convergence}{The convergence code. This code
#' is returned by \code{optim} or \code{nlminb}. Values other than 0 indicate suspect
#' convergence.}
#'
#' \item{likelihood}{The name of the likelihood. This is
#' the value of the argument \code{likelihood}. }
#'
#' \item{w.lo}{Left-truncation value used during the fit.}
#'
#' \item{w.hi}{Right-truncation value used during the fit.}
#'
#' \item{mf}{A modelframe of detections within the strip
#' or circle used in the fit. Column 'dist' contains the
#' observed distances.
#' Column 'offset(...)' contains group sizes associated with
#' the values of 'dist'. Group
#' sizes are only used in \code{abundEstim}. This model frame
#' contains only non-missing distances between \code{w.lo} and \code{w.hi}. }
#'
#' \item{model.frame}{A \code{model.frame} object containing observed distances
#' (the 'response'), covariates specified in the formula, and group sizes if they
#' were specified. If specified, the name of the group size column is "offset(-variable-)",
#' not "groupsize(-variable-)", because internally it is easier to treat group sizes
#' as an offset in the model. This component is a proper \code{model.frame} and contains
#' both 'terms' and 'contrasts' attributes. }
#'
#' \item{siteID.cols}{A vector containing the transect ID column names in \code{detectionData}
#' and \code{siteData}. Transect IDs can be a composite of two or more columns and hence
#' this component can have length greater than 1. }
#'
#' \item{expansions}{The number of expansion terms used
#' during estimation.}
#'
#' \item{series}{The type of expansion used during estimation.}
#'
#' \item{call}{The original call of this function.}
#'
#' \item{call.x.scl}{The \emph{input} or user requested
#' distance at which the distance function is scaled. }
#'
#' \item{call.g.x.scl}{The \code{input} value specifying the
#' height of the distance function at a distance
#' of \code{call.x.scl}. }
#'
#' \item{call.observer}{The value of input parameter \code{observer}.
#' The input \code{observer} parameter is only applicable when
#' \code{g.x.scl} is a data frame.}
#'
#' \item{fit}{The fitted object returned by \code{optim}.
#' See documentation for \code{optim}.}
#'
#' \item{factor.names}{The names of any factors in \code{formula}. }
#'
#' \item{pointSurvey}{The input value of \code{pointSurvey}.
#' This is TRUE if distances are radial from a point. FALSE
#' if distances are perpendicular off-transect. }
#'
#' \item{formula}{The formula specified for the detection function.}
#'
#' \item{control}{A list containing values of the 'control' parameters
#' set by \code{RdistanceControls}.}
#'
#' \item{outputUnits}{The measurement units used for output. All
#' distance measurements are converted to these units internally. }
#'
#' \item{x.scl}{The \emph{actual} distance at which
#' the distance function is scaled to some value.
#' i.e., this is the actual \emph{x} at
#' which g(\emph{x}) = \code{g.x.scl}.
#' Note that \code{call.x.scl} = \code{x.scl} unless
#' \code{call.x.scl} == "max", in which case \code{x.scl} is the
#' distance at which \emph{g}() is maximized. }
#'
#' \item{g.x.scl}{The \emph{actual} height of the distance function
#' at a distance of \code{x.scl}. Note that \code{g.x.scl} =
#' \code{call.g.x.scl} unless \code{call.g.x.scl}
#' is a multiple observer data frame, in which case \code{g.x.scl} is the
#' actual height of the distance function at \code{x.scl} computed
#' from the multiple observer data frame. }
#'
#' @references Buckland, S.T., D.R. Anderson, K.P. Burnham, J.L. Laake, D.L. Borchers,
#' and L. Thomas. (2001) \emph{Introduction to distance sampling: estimating
#' abundance of biological populations}. Oxford University Press, Oxford, UK.
#'
#' @seealso \code{\link{abundEstim}}, \code{\link{autoDistSamp}}.
#' Likelihood-specific help files (e.g., \code{\link{halfnorm.like}}).
#'
#' @examples
#' # Load example sparrow data (line transect survey type)
#' data(sparrowDf)
#'
#' dfunc <- dfuncEstim(data = sparrowDf
#' , formula = dist ~ 1)
#' dfunc
#' plot(dfunc)
#'
#' @keywords model
#' @export
dE.single <- function( data
, formula
, likelihood = "halfnorm"
, w.lo = units::set_units(0,"m")
, w.hi = NULL
, expansions = 0
, series = "cosine"
, x.scl = w.lo
, g.x.scl = 1
, warn = TRUE
, outputUnits = NULL
){
# if ( likelihood == "uniform" ){
# .Deprecated(new = "logistic.like"
# , package = "Rdistance"
# , msg = paste("'unform.like' is depricated. Use 'logistic'.\n"
# , "Switching to 'logistic' likelihood.")
# , old = "uniform.like")
# likelihood <- "logistic"
# }
# Parse the formula and make a model list ----
# all parameters go into parseModel because they need to become
# components for the output list, not just formula.
# All checking is done in parseModel(), including
# check of units (via checkUnits()).
modelList <- Rdistance::parseModel(data = data
, formula = formula
, likelihood = likelihood
, w.lo = w.lo
, w.hi = w.hi
, expansions = expansions
, series = series
, x.scl = x.scl
, g.x.scl = g.x.scl
, outputUnits = outputUnits
)
strt.lims <- Rdistance::startLimits(modelList)
# Perform optimization
fit <- mlEstimates( ml = modelList
, strt.lims = strt.lims
)
# Assemble results
ans <- c(fit, modelList)
class(ans) <- "dfunc"
if ( ans$likelihood != "Gamma" ){
# not absolutely necessary.
# Could estimate these later in print and plot methods.
# but this saves a little time.
gx <- gxEstim(ans)
ans$x.scl <- gx$x.scl
ans$g.x.scl <- gx$g.x.scl
} else {
# Special case of Gamma
ans$x.scl <- x.scl
ans$g.x.scl <- g.x.scl
}
# ---- Check parameter boundaries ----
fuzz <- getOption("Rdistance_fuzz")
if (ans$convergence != 0) {
if (warn) warning(ans$message)
low.bound <- FALSE
high.bound <- FALSE
} else {
low.bound <- ans$par <= (ans$limits$low + fuzz)
high.bound <- ans$par >= (ans$limits$high - fuzz)
}
if (any(low.bound)) {
# if we are here, model converged but to limit
ans$convergence <- -1
messL <- paste(paste(strt.lims$names[low.bound], "parameter at lower boundary.")
, collapse = "; ")
ans$message <- messL
if (warn) warning(ans$message)
}
else {
messL <- NULL
}
if (any(high.bound)) {
ans$convergence <- -1
messH <- paste(paste(strt.lims$names[high.bound], "parameter at upper boundary.")
, collapse = "; ")
ans$message <- c(messL, messH)
if (warn) warning(ans$message)
}
ans
} # end function
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.