Nothing
#' @title negexp.like - Negative exponential distance function
#'
#' @description Computes the negative exponential form of
#' a distance function
#'
#' @param a A vector of likelihood parameter values. Length and
#' meaning depend on \code{series} and \code{expansions}. If
#' no expansion terms were called for
#' (i.e., \code{expansions = 0}), the distance likelihood
#' contains only one canonical parameter, which
#' is the first element of \code{a} (see Details). If one
#' or more expansions are called for,
#' coefficients for the expansion terms follow
#' coefficients for the canonical parameter.
#'
#' @param dist A numeric vector containing the observed distances.
#'
#' @param covars Data frame containing values of covariates at each
#' observation in \code{dist}.
#'
#' @param w.lo Scalar value of the lowest observable distance. This is the \emph{left truncation} of sighting distances in \code{dist}. Same units as \code{dist}.
#' Values less than \code{w.lo} are allowed in \code{dist}, but are ignored and their contribution to the likelihood is set to \code{NA} in the output.
#' @param w.hi Scalar value of the largest observable distance. This is the \emph{right truncation} of sighting distances in \code{dist}. Same units as \code{dist}.
#' Values greater than \code{w.hi} are allowed in \code{dist}, but are ignored and their contribution to the likelihood is set to \code{NA} in the output.
#' @param series A string specifying the type of expansion to use. Currently, valid values are 'simple', 'hermite', and 'cosine'; but, see
#' \code{\link{dfuncEstim}} about defining other series.
#' @param expansions A scalar specifying the number of terms in \code{series}. Depending on the series, this could be 0 through 5.
#' The default of 0 equates to no expansion terms of any type.
#' @param scale Logical scalar indicating whether or not to scale the likelihood so it integrates to 1. This parameter is used to stop recursion in other functions.
#' If \code{scale} equals TRUE, a numerical integration routine (\code{\link{integration.constant}}) is called, which in turn calls this likelihood function again
#' with \code{scale} = FALSE. Thus, this routine knows when its values are being used to compute the likelihood and when its value is being used to compute the
#' constant of integration. All user defined likelihoods must have and use this parameter.
#' @param pointSurvey Boolean. TRUE if \code{dist} is point transect data, FALSE if line transect data.
#'
#' @details The negative exponential likelihood is
#' \deqn{f(x|a) = \exp(-ax)}{f(x|a) = exp( -a*x )} where \eqn{a} is a
#' slope parameter to be estimated.
#'
#' \bold{Expansion Terms}: If the number of \code{expansions} = k (k > 0), the expansion
#' function specified by \code{series} is called (see for example
#' \code{\link{cosine.expansion}}). Assuming \eqn{h_{ij}(x)}{h_ij(x)} is
#' the \eqn{j^{th}}{j-th} expansion term for the \eqn{i^{th}}{i-th} distance and that
#' \eqn{c_1, c_2, \dots, c_k}{c(1), c(2), ..., c(k)}are (estimated) coefficients for the expansion terms, the likelihood contribution for the \eqn{i^{th}}{i-th}
#' distance is,
#' \deqn{f(x|a,b,c_1,c_2,\dots,c_k) = f(x|a,b)(1 + \sum_{j=1}^{k} c_j h_{ij}(x)).}{f(x|a,b,c_1,c_2,...,c_k) = f(x|a,b)(1 + c(1) h_i1(x) + c(2) h_i2(x) + ... + c(k) h_ik(x)). }
#'
#' @return A numeric vector the same length and order as \code{dist} containing the likelihood contribution for corresponding distances in \code{dist}.
#' Assuming \code{L} is the returned vector from one of these functions, the full log likelihood of all the data is \code{-sum(log(L), na.rm=T)}. Note that the
#' returned likelihood value for distances less than \code{w.lo} or greater than \code{w.hi} is \code{NA}, and thus it is prudent to use \code{na.rm=TRUE} in the
#' sum. If \code{scale} = TRUE, the integral of the likelihood from \code{w.lo} to \code{w.hi} is 1.0. If \code{scale} = FALSE, the integral of the likelihood is
#' arbitrary.
#'
#' @seealso \code{\link{dfuncEstim}},
#' \code{\link{halfnorm.like}},
#' \code{\link{uniform.like}},
#' \code{\link{hazrate.like}},
#' \code{\link{Gamma.like}}
#'
#' @examples \dontrun{
#' set.seed(238642)
#' x <- seq(0, 100, length=100)
#'
#' # Plots showing effects of changes in parameter Beta
#' plot(x, negexp.like(0.01, x), type="l", col="red")
#' plot(x, negexp.like(0.05, x), type="l", col="blue")
#'
#' # Estimate 'negexp' distance function
#' Beta <- 0.01
#' x <- rexp(1000, rate=Beta)
#' dfunc <- dfuncEstim(x~1, likelihood="negexp")
#' plot(dfunc)
#' }
#'
#' @keywords models
#' @export
negexp.like <- function (a,
dist,
covars = NULL,
w.lo = units::set_units(0,"m"),
w.hi = max(dist),
series = "cosine",
expansions = 0,
scale = TRUE,
pointSurvey = FALSE){
# rule is: parameter 'a' never has units.
# upon entry: 'dist', 'w.lo', and 'w.hi' all have units
dist[ (dist < w.lo) | (dist > w.hi) ] <- NA
# What's in a? :
# If no covariates: a = [a, <expansion coef>]
# If covariates: a = [(Intercept), b1, ..., bp, <expansion coef>]
if(!is.null(covars)){
q <- ncol(covars)
beta <- a[1:q]
s <- drop( covars %*% matrix(beta,ncol=1) )
beta <- exp(s) # link function here
} else {
beta <- a[1]
}
key = -beta * units::drop_units(dist)
key <- exp(key)
if(expansions > 0){
w <- w.hi - w.lo
if (series=="cosine"){
dscl = units::drop_units(dist/w)
exp.term <- cosine.expansion( dscl, expansions )
} else if (series=="hermite"){
dscl = units::drop_units(dist/w)
exp.term <- hermite.expansion( dscl, expansions )
} else if (series == "simple") {
dscl = units::drop_units(dist/w)
exp.term <- simple.expansion( dscl, expansions )
} else {
stop( paste( "Unknown expansion series", series ))
}
expanCoefs <- a[(length(a)-(expansions-1)):(length(a))]
key <- key * (1 + c(exp.term %*% expanCoefs))
# without monotonicity restraints, function can go negative,
# especially in a gap between datapoints. This makes no sense in distance
# sampling and screws up the convergence.
key[ which(key < 0) ] <- 0
}
if( scale ){
key = key / integration.constant(dist=dist,
density=negexp.like,
a=a,
covars = covars,
w.lo=w.lo,
w.hi=w.hi,
series=series,
expansions=expansions,
pointSurvey = pointSurvey) # makes integral from w.lo to w.hi = 1.0
}
# cat(paste("nLL=", -sum(log(key), na.rm=TRUE), "\n"))
# cat(paste("n(NA)=", sum(is.na(key)), "\n"))
# cat(paste("n(Inf)=", sum(is.infinite(key)), "\n"))
# cat(paste("n(NaN)=", sum(is.nan(key)), "\n"))
# if(any(is.na(a) | is.nan(a) | is.infinite(a))) readline("-------- hit return...")
c(key)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.