Nothing
## ----setup, include = FALSE---------------------------------------------------
is_check <- ("CheckExEnv" %in% search()) ||
any(c("_R_CHECK_TIMINGS_", "_R_CHECK_LICENSE_") %in% names(Sys.getenv())) ||
!file.exists("../models/MultilevelRoBMA/fit_Johnides2025.RDS")
knitr::opts_chunk$set(
collapse = TRUE,
comment = "#>",
eval = !is_check,
dev = "png")
if(.Platform$OS.type == "windows"){
knitr::opts_chunk$set(dev.args = list(type = "cairo"))
}
## ----include = FALSE----------------------------------------------------------
library(RoBMA)
fit <- readRDS(file = "../models/MultilevelRoBMA/fit_Johnides2025.RDS")
fit_simple <- readRDS(file = "../models/MultilevelRoBMA/fit_Johnides2025_single.RDS")
## ----include = FALSE, eval = FALSE--------------------------------------------
# # R package version updating
# library(RoBMA)
# data("Johnides2025", package = "RoBMA")
#
# fit <- RoBMA(
# d = Johnides2025$d,
# se = Johnides2025$se,
# study_ids = Johnides2025$study,
# algorithm = "ss",
# adapt = 5000,
# burnin = 5000,
# sample = 10000,
# parallel = TRUE,
# seed = 1,
# autofit = FALSE
# )
# saveRDS(fit, file = "../models/MultilevelRoBMA/fit_Johnides2025.RDS", compress = "xz")
#
# fit_simple <- RoBMA(
# d = Johnides2025$d,
# se = Johnides2025$se,
# algorithm = "ss",
# adapt = 5000,
# burnin = 5000,
# sample = 10000,
# parallel = TRUE,
# seed = 1,
# autofit = FALSE
# )
# saveRDS(fit_simple, file = "../models/MultilevelRoBMA/fit_Johnides2025_single.RDS", compress = "xz")
## -----------------------------------------------------------------------------
library(RoBMA)
data("Johnides2025", package = "RoBMA")
## -----------------------------------------------------------------------------
head(Johnides2025)
## ----eval = FALSE-------------------------------------------------------------
# fit <- RoBMA(
# d = Johnides2025$d,
# se = Johnides2025$se,
# study_ids = Johnides2025$study,
# algorithm = "ss",
# adapt = 5000,
# burnin = 5000,
# sample = 10000,
# parallel = TRUE,
# seed = 1,
# autofit = FALSE
# )
## -----------------------------------------------------------------------------
summary(fit)
## -----------------------------------------------------------------------------
summary_heterogeneity(fit)
## -----------------------------------------------------------------------------
summary(fit, type = "models")
## ----fig.width = 6, fig.height = 4--------------------------------------------
plot(fit, parameter = "weightfunction", rescale_x = TRUE)
## ----eval = FALSE-------------------------------------------------------------
# fit_simple <- RoBMA(
# d = Johnides2025$d,
# se = Johnides2025$se,
# algorithm = "ss",
# adapt = 5000,
# burnin = 5000,
# sample = 10000,
# parallel = TRUE,
# seed = 1,
# autofit = FALSE
# )
## -----------------------------------------------------------------------------
summary(fit_simple)
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.