Nothing
makePositiveDefinite <- function(A, epsilon = 1e-8) {
A_reg <- A
diag(A_reg) <- diag(A_reg) + epsilon
return(A_reg)
}
get_inverse_wishart_matrix2 = function(X, Y, Z, subject_id, subject_to_B, binary = FALSE){
constant_cols <- apply(X, 2, function(x) stats::var(x) == 0)
non_constant_cols <- !constant_cols
X[, constant_cols] = scale(X[, constant_cols], center = TRUE, scale = FALSE)
X[, non_constant_cols] <- scale(X[, non_constant_cols])
if(!binary){
suppressMessages(lmm <- lme4::lmer(Y ~ 0 + X + (0 + Z|subject_id), REML = TRUE))
coe = as.matrix(lme4::ranef(lmm)[[1]])
coe = (coe[names(subject_to_B),])
}else{
suppressMessages(lmm <- lme4::glmer(as.factor(Y) ~ 0 + X + (0 + Z|subject_id), family = stats::binomial(link = "logit")))
coe = as.matrix(lme4::ranef(lmm)[[1]])
coe = (coe[names(subject_to_B),])
}
co = as.matrix(Matrix::bdiag(lme4::VarCorr(lmm)))
svd_A <- svd(co)
tolerance = 1e-10 * max(svd_A$d)
while(length(co) > 1 & (kappa(co) > 500 | !isPositiveDefinite(co))){
if(tolerance > max(svd_A$d)){
if(!isPositiveDefinite(co)){
eigenvalues <- eigen(co)$values
negative_eigenvalues <- eigenvalues[eigenvalues < 0]
# Check if there are any negative eigenvalues
if (length(negative_eigenvalues) > 0) {
# Find the negative eigenvalue with the largest absolute value
largest_abs_negative_eigenvalue <- negative_eigenvalues[which.max(abs(negative_eigenvalues))]
diag(co) = diag(co) - largest_abs_negative_eigenvalue + 1e-10
svd_A <- svd(co)
tolerance = 1e-10 * max(svd_A$d)
next
}else{
break
}
}else{
break
}
}
tolerance = tolerance * 2
svd_A <- svd(co)
D_truncated <- diag(svd_A$d)
diag(D_truncated) = pmax(diag(D_truncated), tolerance)
co <- svd_A$u %*% D_truncated %*% t(svd_A$v)
co = makePositiveDefinite(co)
co = (co + t(co)) / 2
}
return(list(coe = as.matrix(coe), sigma = stats::sigma(lmm), covariance = as.matrix(co)))
}
bartModelMatrix=function(X, numcut=0L, usequants=FALSE, type=7,
rm.const=FALSE, cont=FALSE, xinfo=NULL) {
X.class = class(X)[1]
if(X.class=='factor') {
X.class='data.frame'
X=data.frame(X=X)
}
grp=NULL
if(X.class=='data.frame') {
p=dim(X)[2]
xnm = names(X)
for(i in 1:p) {
if(is.factor(X[[i]])) {
Xtemp = nnet::class.ind(X[[i]])
colnames(Xtemp) = paste(xnm[i],1:ncol(Xtemp),sep='')
X[[i]]=Xtemp
m=ncol(Xtemp)
grp=c(grp, rep(m, m))
} else {
X[[i]]=cbind(X[[i]])
colnames(X[[i]])=xnm[i]
grp=c(grp, 1)
##grp=c(grp, i)
}
}
Xtemp=cbind(X[[1]])
if(p>1) for(i in 2:p) Xtemp=cbind(Xtemp, X[[i]])
X=Xtemp
}
else if(X.class=='numeric' | X.class=='integer') {
X=cbind(as.numeric(X))
##grp=1
}
else if(X.class=='NULL') return(X)
else if(X.class!='matrix')
stop('Expecting either a factor, a vector, a matrix or a data.frame')
N <- nrow(X)
p <- ncol(X)
xinfo. <- matrix(nrow=p, ncol=numcut)
nc <- numcut
rm.vars <- c()
if(length(xinfo)==0 & N>0 & p>0 & (rm.const | numcut[1]>0)) {
for(j in 1:p) {
X.class <- class(X[1, j])[1]
if(X.class=='numeric' | X.class=='integer') {
xs <- unique(sort(X[ , j]))
k <- length(xs)
nc[j] <- numcut
if(k %in% 0:1) { # deal with constant variables
rm.vars <- c(rm.vars, -j)
nc[j] <- 1
if(k==0) xs <- NA
}
else if(cont)
xs <- seq(xs[1], xs[k], length.out=numcut+2)[-c(1, numcut+2)]
else if(k<numcut) {
xs <- 0.5*(xs[1:(k-1)]+xs[2:k]) # if k < numcut, use middle point between values to split
nc[j] <- k-1
}
else if(usequants) {
xs <- stats::quantile(X[ , j], type=type,
probs=(0:(numcut+1))/(numcut+1))[-c(1, numcut+2)]
names(xs) <- NULL
}
else xs <-
seq(xs[1], xs[k], length.out=numcut+2)[-c(1, numcut+2)]
}
else
stop(paste0('Variables of type ', X.class, ' are not supported'))
xinfo.[j, 1:nc[j] ] <- xs
}
}
X <- data.matrix(X)
if(length(xinfo)>0) {
if(is.list(xinfo)) for(j in 1:p){
xinfo.[j, 1:length(xinfo[[j]])] <- xinfo[[j]]
}
else if(is.matrix(xinfo)) xinfo. <- xinfo
else stop('Only a list or a matrix can be provided for xinfo')
for(j in 1:p) nc[j] <- sum(!is.na(xinfo.[j, ]))
}
xinfo <- xinfo.
if(rm.const && length(rm.vars)>0 &&
!(length(rm.vars)==p && all((1:p)==(-rm.vars)))) {
X <- X[ , rm.vars]
nc <- nc[rm.vars]
xinfo <- xinfo[rm.vars, ]
grp <- grp[rm.vars]
}
else if(length(rm.vars)==0 || (length(rm.vars)==p && all((1:p)==(-rm.vars))))
rm.vars <- 1:p
dimnames(xinfo) <- list(dimnames(X)[[2]], NULL)
if(all(numcut==0)) return(X)
else return(list(X=X, numcut=as.integer(nc), rm.const=rm.vars,
xinfo=xinfo, grp=grp))
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.