Nothing
skip_on_cran()
# .get_fc_args
test_that("The correct fc arguments are created", {
expect_equal(.get_fc_args("lqpht"),
c("noautofeature", "threshold"))
expect_snapshot_error(.get_fc_args("lb"))
})
# .make_args
test_that("The correct arguments are created", {
expect_equal(.make_args(1, "l", 500, "removeduplicates=false"),
c("betamultiplier=1", "maximumiterations=500", "noautofeature",
"noquadratic", "noproduct", "nohinge",
"removeduplicates=false"))
})
# .get_lambdas
const <- c("linearPredictorNormalizer, 1.68",
"densityNormalizer, 21.50",
"numBackgroundPoints, 5000",
"entropy, 5.80")
linear <- c("bio1, -0.44, 61.0, 42.0", const)
quadratic <- c("bio1^2, -0.44, 61.0, 42.0", const)
product <- c("bio1*bio16, -0.44, 61.0, 42.0", const)
hinge <- c("'bio1, -0.44, 61.0, 42.0", const)
rev_hinge <- c("`bio1, -0.44, 61.0, 42.0", const)
threshold <- c("(500<bio1), -0.44, 0.0, 1.0", const)
categ <- c("(biome=1.0), -0.44, 0.0, 1.0", const)
test_that("Constants are parsed correctly", {
l <- .get_lambdas(linear)
# Get the correct linear predictor normalizer
expect_equal(l$lpn, 1.68)
# Get the correct density normalizer
expect_equal(l$dn, 21.50)
# Get the correct entropy
expect_equal(l$entropy, 5.80)
# Lambdas has correct column names
expect_named(l$lambdas, c("feature", "lambda", "min", "max"))
# Min max has the correct column names
expect_named(l$min_max, c("variable", "min", "max"))
# Min max has the correct length
expect_length(l$min_max$variable, 1)
# Output has the correct column names
expect_named(l, c("lambdas", "lpn", "dn", "entropy", "min_max"))
l <- .get_lambdas(c("bio1, 0.0, 61.0, 42.0", linear))
# Remove feature in which lambda is zero
expect_length(l$lambdas$feature, 1)
})
test_that("The correct linear feature is created", {
l <- .get_lambdas(linear)
expect_equal(l$lambdas,
data.frame(feature = "bio1",
lambda = -0.44,
min = 61.0,
max = 42.0))
expect_equal(l$min_max,
data.frame(variable = "bio1",
min = 61.0,
max = 42.0))
})
test_that("The correct quadratic feature is created", {
expect_equal(.get_lambdas(quadratic)$lambdas,
data.frame(feature = "I(bio1^2)",
lambda = -0.44,
min = 61.0,
max = 42.0))
})
test_that("The correct product feature is created", {
expect_equal(.get_lambdas(product)$lambdas,
data.frame(feature = "I(bio1*bio16)",
lambda = -0.44,
min = 61.0,
max = 42.0))
})
test_that("The correct hinge feature is created", {
expect_equal(.get_lambdas(hinge)$lambdas,
data.frame(feature = ".hinge(bio1, 61, 42)",
lambda = -0.44,
min = 61.0,
max = 42.0))
# Variable lower than minimum (hinge)
expect_equal(.hinge(41.9, 42, 61), 0)
# Variable equal to minimum (hinge)
expect_equal(.hinge(42, 42, 61), 0)
# Variable greater than minimum
expect_equal(.hinge(350, 300, 400), 0.5)
# Variable equal to maximum
expect_equal(.hinge(61, 42, 61), 1)
})
test_that("The correct reverse hinge feature is created", {
expect_equal(.get_lambdas(rev_hinge)$lambdas,
data.frame(feature = ".rev_hinge(bio1, 61, 42)",
lambda = -0.44,
min = 61.0,
max = 42.0))
# Variable equal to minimum
expect_equal(.rev_hinge(42, 42, 61), 1)
# Variable lower than maximum
expect_equal(.rev_hinge(350, 300, 400), 0.5)
# Variable equal to maximum (hinge)
expect_equal(.rev_hinge(61, 42, 61), 0)
# Variable greater than maximum (hinge)
expect_equal(.rev_hinge(63, 42, 61), 0)
})
test_that("The correct threshold feature is created", {
expect_equal(.get_lambdas(threshold)$lambdas,
data.frame(feature = ".threshold(bio1, 500)",
lambda = -0.44,
min = 0,
max = 1))
# Variable lower than threshold
expect_equal(.threshold(300, 500), 0)
# Variable equal to threshold
expect_equal(.threshold(500, 500), 1)
# Variable greater than threshold
expect_equal(.threshold(600, 500), 1)
})
test_that("The correct categorical feature is created", {
expect_equal(.get_lambdas(categ)$lambdas,
data.frame(feature = ".categorical(biome, 1.0)",
lambda = -0.44,
min = 0,
max = 1))
# Variable lower than category
expect_equal(.categorical(0, 1), 0)
# Variable equal to category
expect_equal(.categorical(1, 1), 1)
# Variable greater than category
expect_equal(.categorical(2, 1), 0)
})
# train
test_that("The function trainMaxent produces the correct ouput", {
m <- trainMaxent(data = SDMtune:::t,
reg = 1.2,
fc = "l")
expect_s4_class(m, "SDMmodel")
expect_s4_class(m@model, "Maxent")
expect_s4_class(m@data, "SWD")
expect_equal(m@model@reg, 1.2)
expect_equal(m@model@fc, "l")
expect_equal(m@data, SDMtune:::t)
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.