Nothing
#' Calculate the point estimates of the Layman metrics for each community
#'
#' This function loops over each community, determines the centre of mass
#' (centroid) of each of the groups comprising the community using the basic
#' [base::mean()] function independently on the marginal x and y vectors,
#' and calculates the corresponding 6 Layman metrics based on these points.
#'
#' @param siber a siber object as created by [createSiberObject()].
#'
#' @return A 6 x m matrix of the 6 Layman metrics of dX_range, dY_range, TA,
#' CD, MNND and SDNND in rows, for each community by column
#'
#' @examples
#' data(demo.siber.data)
#' my.siber.data <- createSiberObject(demo.siber.data)
#' communityMetricsML(my.siber.data)
#'
#' @export
communityMetricsML <- function(siber) {
out <- matrix(NA, nrow = 6, ncol = siber$n.communities,
dimnames = list(c("dY_range", "dX_range",
"TA", "CD", "MNND", "SDNND"),
siber$all.communities
)
)
for (i in 1:siber$n.communities){
tmp <- laymanMetrics(siber$ML.mu[[i]][1,1,] ,
siber$ML.mu[[i]][1,2,])
out[,i] <- tmp$metrics
}
return(out)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.