Construct_G_W_W0_V | R Documentation |
Generating coefficient and conditional matrics for Gaussian Process(GP) model with Matern 2.5 or power exponential kernels.
Construct_G_W_W0_V(d, gamma, eta, kernel_type, is_initial)
d |
A value of the distance between the sorted input. |
gamma |
A value of the range parameter for the covariance matrix. |
eta |
The noise-to-signal ratio. |
kernel_type |
A character specifying the type of kernels of the input. |
is_initial |
A bolean variable. is_initial=TRUE means the matrics generated is for the inital state. |
A list of GG, W, W0 and VV matrix.
Hanmo Li [aut, cre], Yuedong Wang [aut], Mengyang Gu [aut]
Maintainer: Hanmo Li <hanmo@pstat.ucsb.edu>
Hartikainen, J. and Sarkka, S. (2010). Kalman filtering and smoothing solutions to temporal gaussian process regression models. Machine Learning for Signal Processing (MLSP), 2010 IEEE International Workshop, 379-384.
M. Gu, Y. Xu (2019), fast nonseparable Gaussian stochastic process with application to methylation level interpolation. Journal of Computational and Graphical Statistics, In Press, arXiv:1711.11501.
Campagnoli P, Petris G, Petrone S. (2009), Dynamic linear model with R. Springer-Verlag New York.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.