Construct_G_W_W0_V: Generating coefficient and conditional matrics

View source: R/RcppExports.R

Construct_G_W_W0_VR Documentation

Generating coefficient and conditional matrics

Description

Generating coefficient and conditional matrics for Gaussian Process(GP) model with Matern 2.5 or power exponential kernels.

Usage

Construct_G_W_W0_V(d, gamma, eta, kernel_type, is_initial)

Arguments

d

A value of the distance between the sorted input.

gamma

A value of the range parameter for the covariance matrix.

eta

The noise-to-signal ratio.

kernel_type

A character specifying the type of kernels of the input. matern_5_2 are Matern correlation with roughness parameter 5/2. exp is power exponential correlation with roughness parameter alpha=2. The default choice is matern_5_2.

is_initial

A bolean variable. is_initial=TRUE means the matrics generated is for the inital state.

Value

A list of GG, W, W0 and VV matrix.

Author(s)

Hanmo Li [aut, cre], Yuedong Wang [aut], Mengyang Gu [aut]

Maintainer: Hanmo Li <hanmo@pstat.ucsb.edu>

References

Hartikainen, J. and Sarkka, S. (2010). Kalman filtering and smoothing solutions to temporal gaussian process regression models. Machine Learning for Signal Processing (MLSP), 2010 IEEE International Workshop, 379-384.

M. Gu, Y. Xu (2019), fast nonseparable Gaussian stochastic process with application to methylation level interpolation. Journal of Computational and Graphical Statistics, In Press, arXiv:1711.11501.

Campagnoli P, Petris G, Petrone S. (2009), Dynamic linear model with R. Springer-Verlag New York.


SKFCPD documentation built on June 22, 2024, 11:06 a.m.