Estimated_GP_params-class: Estimated GaSP parameters class

Estimated_GP_params-classR Documentation

Estimated GaSP parameters class

Description

S4 class for fast parameter estimation of the Gaussian stochastic process (GaSP) model with the Matern kernel function with or without a noise.

Objects from the Class

Objects of this class are created with the function Estimate_GP_params that computes the calculations needed for setting up the estimation and prediction.

Slots

beta:

object of class numeric for the inverse of the range parameter, i.e. beta = 1/gamma.

eta:

object of class numeric for the estimated noise-to-signal parameter.

sigma_2:

object of class numeric for the estimated variance parameter.

Author(s)

Hanmo Li [aut, cre], Yuedong Wang [aut], Mengyang Gu [aut]

Maintainer: Hanmo Li <hanmo@pstat.ucsb.edu>

References

Hartikainen, J. and Sarkka, S. (2010). Kalman filtering and smoothing solutions to temporal gaussian process regression models, Machine Learning for Signal Processing (MLSP), 2010 IEEE International Workshop, 379-384.

M. Gu, Y. Xu (2017), Nonseparable Gaussian stochastic process: a unified view and computational strategy, arXiv:1711.11501.

M. Gu, X. Wang and J.O. Berger (2018), Robust Gaussian Stochastic Process Emulation, Annals of Statistics, 46, 3038-3066.


SKFCPD documentation built on June 22, 2024, 11:06 a.m.