GaSP_CPD_pred_dist_objective_prior_KF_online: Computing the predictive distribution in the online fashion

View source: R/RcppExports.R

GaSP_CPD_pred_dist_objective_prior_KF_onlineR Documentation

Computing the predictive distribution in the online fashion

Description

This function computs the predictive distribution of the run length in the online fashion.

Usage

  GaSP_CPD_pred_dist_objective_prior_KF_online(KF_params, prev_L_params, cur_point,
  d, gamma, model_type, mu, sigma_2, eta, kernel_type, G_W_W0_V_ini, G_W_W0_V)

Arguments

KF_params

A list of current Kalman filter parameters.

prev_L_params

A list of previous Kalman filter parameters.

cur_point

A value of current observation.

d

A value of the distance between the sorted input.

gamma

A numeric variable of the range parameter for the covariance matrix. The default value of gamma is 1.

model_type

A numeric variable that can take values of 0, 1 and 2. Model_type=0 stands for a GP model with unknown mean and known variance. Model_type=1 stands for a GP model with known mean and unknown variance. Model_type=2 stands for a GP model with unknown mean and unknown variance. The default value of model_type is 2.

mu

A vector of the mean parameter at each coordinate. Ignored when model_type = 0 or 2.

sigma_2

A vector of the variance parameter at each coordinate.

eta

A vector of the noise-to-signal ratio at each coordinate

kernel_type

A character specifying the type of kernels of the input. matern_5_2 are Matern correlation with roughness parameter 5/2. exp is power exponential correlation with roughness parameter alpha=2. The default choice is matern_5_2.

G_W_W0_V_ini

A list of the initial coefficient and conditional matrics for Gaussian Process(GP) model. It's the output from the function Construct_G_W_W0_V

G_W_W0_V

A list of the coefficient and conditional matrics for Gaussian Process(GP) model. It's the output from the function Construct_G_W_W0_V

Value

GaSP_CPD_pred_dist_objective_prior_KF_online returns a list that contains 3 items: (1) the current Kalman filter parameters; (2) the previous Kalman filter parameters and (3) the vector of the logrithm for the current predictive distribution of different run lengths.

Author(s)

Hanmo Li [aut, cre], Yuedong Wang [aut], Mengyang Gu [aut]

Maintainer: Hanmo Li <hanmo@pstat.ucsb.edu>

References

Fearnhead, P., & Liu, Z. (2007). On-line inference for multiple changepoint problem. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 69(4), 589-605.

Adams, R. P., & MacKay, D. J. (2007). Bayesian online changepoint detection. arXiv preprint arXiv:0710.3742.

Hartikainen, J. and Sarkka, S. (2010). Kalman filtering and smoothing solutions to temporal gaussian process regression models, Machine Learning for Signal Processing (MLSP), 2010 IEEE International Workshop, 379-384.


SKFCPD documentation built on June 22, 2024, 11:06 a.m.