GaSP_CPD_pred_dist_objective_prior_KF_online | R Documentation |
This function computs the predictive distribution of the run length in the online fashion.
GaSP_CPD_pred_dist_objective_prior_KF_online(KF_params, prev_L_params, cur_point,
d, gamma, model_type, mu, sigma_2, eta, kernel_type, G_W_W0_V_ini, G_W_W0_V)
KF_params |
A list of current Kalman filter parameters. |
prev_L_params |
A list of previous Kalman filter parameters. |
cur_point |
A value of current observation. |
d |
A value of the distance between the sorted input. |
gamma |
A numeric variable of the range parameter for the covariance matrix. The default value of gamma is 1. |
model_type |
A numeric variable that can take values of 0, 1 and 2. Model_type=0 stands for a GP model with unknown mean and known variance. Model_type=1 stands for a GP model with known mean and unknown variance. Model_type=2 stands for a GP model with unknown mean and unknown variance. The default value of model_type is 2. |
mu |
A vector of the mean parameter at each coordinate. Ignored when model_type = 0 or 2. |
sigma_2 |
A vector of the variance parameter at each coordinate. |
eta |
A vector of the noise-to-signal ratio at each coordinate |
kernel_type |
A character specifying the type of kernels of the input. |
G_W_W0_V_ini |
A list of the initial coefficient and conditional matrics for Gaussian Process(GP) model. It's the output from the function |
G_W_W0_V |
A list of the coefficient and conditional matrics for Gaussian Process(GP) model. It's the output from the function |
GaSP_CPD_pred_dist_objective_prior_KF_online
returns a list that contains 3 items: (1) the current Kalman filter parameters; (2) the previous Kalman filter parameters and (3) the vector of the logrithm for the current predictive distribution of different run lengths.
Hanmo Li [aut, cre], Yuedong Wang [aut], Mengyang Gu [aut]
Maintainer: Hanmo Li <hanmo@pstat.ucsb.edu>
Fearnhead, P., & Liu, Z. (2007). On-line inference for multiple changepoint problem. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 69(4), 589-605.
Adams, R. P., & MacKay, D. J. (2007). Bayesian online changepoint detection. arXiv preprint arXiv:0710.3742.
Hartikainen, J. and Sarkka, S. (2010). Kalman filtering and smoothing solutions to temporal gaussian process regression models, Machine Learning for Signal Processing (MLSP), 2010 IEEE International Workshop, 379-384.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.