get_mu_sigma_hat | R Documentation |
This function computes the estimtation of the mean and variance parameter through Kalamn filters for fast computations.
get_mu_sigma_hat(param, design, response, kernel_type)
param |
a vector of parameters. The first parameter is the natural logarithm of the inverse range parameter in the kernel function. If the data contain noise, the second parameter is the logarithm of the nugget-variance ratio parameter. |
design |
A matrix with dimension n x p. The design of the experiment. |
response |
A matrix with dimension n x q. The observations. |
kernel_type |
A character specifying the type of kernels of the input. |
A list with the estimtation of the mean and variance parameter.
Hanmo Li [aut, cre], Yuedong Wang [aut], Mengyang Gu [aut]
Maintainer: Hanmo Li <hanmo@pstat.ucsb.edu>
Hartikainen, J. and Sarkka, S. (2010). Kalman filtering and smoothing solutions to temporal gaussian process regression models, Machine Learning for Signal Processing (MLSP), 2010 IEEE International Workshop, 379-384.
M. Gu, Y. Xu (2017), Nonseparable Gaussian stochastic process: a unified view and computational strategy, arXiv:1711.11501.
M. Gu, X. Wang and J.O. Berger (2018), Robust Gaussian Stochastic Process Emulation, Annals of Statistics, 46, 3038-3066.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.