get_mu_sigma_hat: Caculate the mean and variance parameter through fast...

View source: R/functions.R

get_mu_sigma_hatR Documentation

Caculate the mean and variance parameter through fast computation

Description

This function computes the estimtation of the mean and variance parameter through Kalamn filters for fast computations.

Usage

get_mu_sigma_hat(param, design, response, kernel_type)

Arguments

param

a vector of parameters. The first parameter is the natural logarithm of the inverse range parameter in the kernel function. If the data contain noise, the second parameter is the logarithm of the nugget-variance ratio parameter.

design

A matrix with dimension n x p. The design of the experiment.

response

A matrix with dimension n x q. The observations.

kernel_type

A character specifying the type of kernels of the input. matern_5_2 are Matern correlation with roughness parameter 5/2. exp is power exponential correlation with roughness parameter alpha=2. The default choice is matern_5_2.

Value

A list with the estimtation of the mean and variance parameter.

Author(s)

Hanmo Li [aut, cre], Yuedong Wang [aut], Mengyang Gu [aut]

Maintainer: Hanmo Li <hanmo@pstat.ucsb.edu>

References

Hartikainen, J. and Sarkka, S. (2010). Kalman filtering and smoothing solutions to temporal gaussian process regression models, Machine Learning for Signal Processing (MLSP), 2010 IEEE International Workshop, 379-384.

M. Gu, Y. Xu (2017), Nonseparable Gaussian stochastic process: a unified view and computational strategy, arXiv:1711.11501.

M. Gu, X. Wang and J.O. Berger (2018), Robust Gaussian Stochastic Process Emulation, Annals of Statistics, 46, 3038-3066.


SKFCPD documentation built on June 22, 2024, 11:06 a.m.