KF_ini_for_profile_like | R Documentation |
Initialize the Kalman filter parameters for Gaussian Process model with Matern 2.5 or power exponential kernels with different observation sequences.
KF_ini_for_profile_like(cur_input, d, gamma, eta, kernel_type, G_W_W0_V)
cur_input |
A value of current observation. |
d |
A value of the distance between the sorted input. |
gamma |
A value of the range parameter for the covariance matrix. |
eta |
The noise-to-signal ratio. |
kernel_type |
A character specifying the type of kernels of the input. |
G_W_W0_V |
A list of the coefficient and conditional matrics for Gaussian Process(GP) model. It's the output from the function |
KF_ini_for_profile_like
returns a list of kalman filter parameters with different observation sequences.
Hanmo Li [aut, cre], Yuedong Wang [aut], Mengyang Gu [aut]
Maintainer: Hanmo Li <hanmo@pstat.ucsb.edu>
Fearnhead, P., & Liu, Z. (2007). On-line inference for multiple changepoint problem. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 69(4), 589-605.
Adams, R. P., & MacKay, D. J. (2007). Bayesian online changepoint detection. arXiv preprint arXiv:0710.3742.
Hartikainen, J. and Sarkka, S. (2010). Kalman filtering and smoothing solutions to temporal gaussian process regression models, Machine Learning for Signal Processing (MLSP), 2010 IEEE International Workshop, 379-384.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.