get_predictive_dist_direct_objective_prior: Updating the predictive distribution

View source: R/RcppExports.R

get_predictive_dist_direct_objective_priorR Documentation

Updating the predictive distribution

Description

Updating the predictive distribution of the run length under the objective prior directly.

Usage

  get_predictive_dist_direct_objective_prior(cur_input_seq, d, gamma, mu, sigma_2, eta)

Arguments

cur_input_seq

A vector of sequence of observations.

d

A value of the distance between the sorted input.

gamma

A numeric variable of the range parameter for the covariance matrix. The default value of gamma is 1.

eta

A vector of the noise-to-signal ratio at each coordinate

mu

A vector of the mean parameter at each coordinate. Ignored when model_type = 0 or 2.

sigma_2

A vector of the variance parameter at each coordinate.

Value

get_predictive_dist_direct_objective_prior returns the log likelihood of observations that follows Gaussian Process with Exponential kernel.

Author(s)

Hanmo Li [aut, cre], Yuedong Wang [aut], Mengyang Gu [aut]

Maintainer: Hanmo Li <hanmo@pstat.ucsb.edu>

References

Williams, C. K., & Rasmussen, C. E. (2006). Gaussian processes for machine learning (Vol. 2, No. 3, p. 4). Cambridge, MA: MIT press.


SKFCPD documentation built on June 22, 2024, 11:06 a.m.