get_predictive_dist_direct_objective_prior | R Documentation |
Updating the predictive distribution of the run length under the objective prior directly.
get_predictive_dist_direct_objective_prior(cur_input_seq, d, gamma, mu, sigma_2, eta)
cur_input_seq |
A vector of sequence of observations. |
d |
A value of the distance between the sorted input. |
gamma |
A numeric variable of the range parameter for the covariance matrix. The default value of gamma is 1. |
eta |
A vector of the noise-to-signal ratio at each coordinate |
mu |
A vector of the mean parameter at each coordinate. Ignored when model_type = 0 or 2. |
sigma_2 |
A vector of the variance parameter at each coordinate. |
get_predictive_dist_direct_objective_prior
returns the log likelihood of observations that follows Gaussian Process with Exponential kernel.
Hanmo Li [aut, cre], Yuedong Wang [aut], Mengyang Gu [aut]
Maintainer: Hanmo Li <hanmo@pstat.ucsb.edu>
Williams, C. K., & Rasmussen, C. E. (2006). Gaussian processes for machine learning (Vol. 2, No. 3, p. 4). Cambridge, MA: MIT press.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.