buildPCA | R Documentation |
buildPCA builds principal components of given dataset.
It is used inside plotPCA
function to build necessary
object to perform principal components analysis.
buildPCA(x, control = list())
x |
dataset of parameters to be transformed |
control |
control list |
returns a list with the following elements:
sdev
the standard deviations of the principal components (i.e., the square roots of the eigenvalues of the covariance/correlation matrix, though the calculation is actually done with the singular values of the data matrix).
rotation
the matrix of variable loadings (i.e., a matrix whose columns contain the eigenvectors).
x
transformed matrix.
center,scale
the centering and scaling used, or FALSE.
Alpar Gür alpar.guer@smail.th-koeln.de
#define objective function objFun <- function(x) 2*(x[1] - 1)^2 + 5*(x[2] - 3)^2 + (10*x[3] - x[4]/3) spotConfig <- list(types = c('numeric', 'numeric', 'numeric', 'numeric'), funEvals = 15, #budget noise = TRUE, seedFun = 1, replicated = 2, seedSPOT = 1, design = designLHD, model = buildRandomForest, #surrogate model optimizer = optimLHD, #LHD to optimize model optimizerControl = list(funEvals=100)) #100 model evals in each step lower <- c(-20, -20, -20, -20) upper <- c(20, 20, 20, 20) res <- spot(x=NULL, fun=objFun, lower=lower, upper=upper, control=spotConfig) resPCA <- buildPCA(res$x)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.