buildTreeModel | R Documentation |
Regression Interface
This is a simple wrapper for the rpart
function from the rpart package.
The purpose of this function is to provide an interface as required by SPOT, to enable
modeling and model-based optimization with regression trees.
buildTreeModel(x, y, control = list())
x |
matrix of input parameters. Rows for each point, columns for each parameter. |
y |
one column matrix of observations to be modeled. |
control |
list of control parameters, currently not used. |
an object of class spotTreeModel
, with a predict
method and a print
method.
## Create design points set.seed(1) x <- cbind(runif(20)*15-5, runif(20)*15) ## Compute observations at design points (for Branin function) y <- funBranin(x) ## Create model fit <- buildTreeModel(x,y) ## Print model parameters print(fit) ## Predict at new location predict(fit,cbind(1,2)) ## True value at location funBranin(matrix( c(1,2), 1, )) ## set.seed(123) x <- seq(-1,1,1e-2) y0 <- c(-10,10) sfun0 <- stepfun(0, y0, f = 0) y <- sfun0(x) fit <- buildTreeModel(x,y) # plot(fit) # plot(x,y, type = "l") yhat <- predict(fit, newdata = 1) yhat$y == 10
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.