buildRSM | R Documentation |
Using the rsm
package, this function builds a linear response surface model.
buildRSM(x, y, control = list())
x |
design matrix (sample locations), rows for each sample, columns for each variable. |
y |
vector of observations at |
control |
(list), with the options for the model building procedure:
|
returns an object of class spotRSM
.
predict.spotRSM
## Create a test function: branin braninFunction <- function (x) { (x[2] - 5.1/(4 * pi^2) * (x[1] ^2) + 5/pi * x[1] - 6)^2 + 10 * (1 - 1/(8 * pi)) * cos(x[1] ) + 10 } ## Create design points x <- cbind(runif(20)*15-5,runif(20)*15) ## Compute observations at design points y <- as.matrix(apply(x,1,braninFunction)) ## Create model with default settings fit <- buildRSM(x,y) ## Predict new point predict(fit,cbind(1,2)) ## True value at location braninFunction(c(1,2)) ## plots plot(fit) ## path of steepest descent descentSpotRSM(fit)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.