buildRanger | R Documentation |
This is a simple wrapper for the ranger
function from the ranger
package.
The purpose of this function is to provide an interface as required by SPOT, to enable
modeling and model-based optimization with ranger
.
buildRanger(x, y, control = list())
x |
matrix of input parameters. Rows for each point, columns for each parameter. |
y |
one column matrix of observations to be modeled. |
control |
list of control parameters. These are all configuration parameters
of the |
an object of class spotRanger
, with a predict
method and a print
method.
#'
## Create a simple training data set testfun <- function (x) x[1]^2 x <- cbind(sort(runif(30)*2-1)) y <- as.matrix(apply(x,1,testfun)) ## test data: xt <- cbind(sort(runif(3000)*2-1)) ## Example with default model (standard randomforest) fit <- buildRanger(x,y) yt <- predict(fit,data.frame(x=xt)) plot(xt,yt$y,type="l") points(x,y,col="red",pch=20) ## Example with extra trees, an interpolating model fit <- buildRanger(x,y, control=list(rangerArguments = list(replace = FALSE, sample.fraction=1, min.node.size = 1, splitrule = "extratrees"))) yt <- predict(fit,data.frame(x=xt)) plot(xt,yt$y,type="l") points(x,y,col="red",pch=20)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.