Description Usage Arguments Details Value References See Also Examples
A function to implement the fixed-point iteration algorithm. This includes monotone, contraction mappings including EM and MM algorithms
1 |
par |
A vector of parameters denoting the initial guess for the fixed-point iteration. |
fixptfn |
A vector function, F that denotes the fixed-point mapping. This function is the most essential input in the package. It should accept a parameter vector as input and should return a parameter vector of same length. This function defines the fixed-point iteration: x[k+1] = F(x[k]. In the case of EM algorithm, F defines a single E and M step. |
objfn |
This is a scalar function, $L$, that denotes a ”merit”
function which attains its local minimum at the fixed-point of $F$.
This function should accept a parameter vector as input and should
return a scalar value. In the EM algorithm, the merit function L
is the log-likelihood. In some problems, a natural merit function may
not exist, in which case the algorithm works with only |
control |
A list of control parameters to pass on to the algorithm. Full names of control list elements must be specified, otherwise, user-specifications are ignored. See *Details* below. |
... |
Arguments passed to |
control
is list of control parameters for the algorithm.
control = list(tol = 1.e-07, maxiter = 1500, trace = FALSE, intermed=FALSE)
tol
- a small, positive scalar that determines when iterations
should be terminated. Iteration is terminated when
abs(x[k] - F(x[k]) <= tol.
Default is 1.e-07
.
maxiter
- an integer denoting the maximum limit on the number of
evaluations of fixptfn
, F. Default is 1500
.
trace
- a logical variable denoting whether some of the intermediate
results of iterations should be displayed to the user.
Default is FALSE
.
intermed
- a logical variable denoting whether the intermediate
results of iterations should be returned. If set to TRUE
, the function
will return a matrix where each row corresponds to parameters at each iteration,
along with the corresponding fixed-point residual value. Default is FALSE
.
A list with the following components:
par |
Parameter,x* that are the fixed-point of F such that x* = F(x*), if convergence is successful. |
value.objfn |
The value of the objective function L at termination. |
fpevals |
Number of times the fixed-point function |
objfevals |
Number of times the objective function |
convergence |
An integer code indicating type of convergence.
|
R Varadhan and C Roland (2008), Simple and globally convergent numerical schemes for accelerating the convergence of any EM algorithm, Scandinavian Journal of Statistics, 35:335-353.
C Roland, R Varadhan, and CE Frangakis (2007), Squared polynomial extrapolation methods with cycling: an application to the positron emission tomography problem, Numerical Algorithms, 44:159-172.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 | ##############################################################################
# Example 1: EM algorithm for Poisson mixture estimation
poissmix.em <- function(p,y) {
# The fixed point mapping giving a single E and M step of the EM algorithm
#
pnew <- rep(NA,3)
i <- 0:(length(y)-1)
zi <- p[1]*exp(-p[2])*p[2]^i / (p[1]*exp(-p[2])*p[2]^i + (1 - p[1])*exp(-p[3])*p[3]^i)
pnew[1] <- sum(y*zi)/sum(y)
pnew[2] <- sum(y*i*zi)/sum(y*zi)
pnew[3] <- sum(y*i*(1-zi))/sum(y*(1-zi))
p <- pnew
return(pnew)
}
poissmix.loglik <- function(p,y) {
# Objective function whose local minimum is a fixed point \
# negative log-likelihood of binary poisson mixture
i <- 0:(length(y)-1)
loglik <- y*log(p[1]*exp(-p[2])*p[2]^i/exp(lgamma(i+1)) +
(1 - p[1])*exp(-p[3])*p[3]^i/exp(lgamma(i+1)))
return ( -sum(loglik) )
}
# Real data from Hasselblad (JASA 1969)
poissmix.dat <- data.frame(death=0:9, freq=c(162,267,271,185,111,61,27,8,3,1))
y <- poissmix.dat$freq
tol <- 1.e-08
# Use a preset seed so the example is reproducible.
require("setRNG")
old.seed <- setRNG(list(kind="Mersenne-Twister", normal.kind="Inversion",
seed=54321))
p0 <- c(runif(1),runif(2,0,4)) # random starting value
# Basic EM algorithm
pf1 <- fpiter(p=p0, y=y, fixptfn=poissmix.em, objfn=poissmix.loglik, control=list(tol=tol))
##############################################################################
# Example 2: Accelerating the convergence of power method iteration for
# finding the dominant eigenvector of a matrix
power.method <- function(x, A) {
# Defines one iteration of the power method
# x = starting guess for dominant eigenvector
# A = a square matrix
ax <- as.numeric(A %*% x)
f <- ax / sqrt(as.numeric(crossprod(ax)))
f
}
# Finding the dominant eigenvector of the Bodewig matrix
# This is a famous matrix for which power method has trouble converging
# See, for example, Sidi, Ford, and Smith (SIAM Review, 1988)
#
# Note: there are two eigenvalues that are equally dominant,
# but have opposite signs.
# Sometimes the power method finds the eigenvector corresponding to the
# large positive eigenvalue, but other times it finds the eigenvector
# corresponding to the large negative eigenvalue
b <- c(2, 1, 3, 4, 1, -3, 1, 5, 3, 1, 6, -2, 4, 5, -2, -1)
bodewig.mat <- matrix(b,4,4)
eigen(bodewig.mat)
p0 <- rnorm(4)
# Standard power method iteration
ans1 <- fpiter(p0, fixptfn=power.method, A=bodewig.mat)
# re-scaling the eigenvector so that it has unit length
ans1$par <- ans1$par / sqrt(sum(ans1$par^2))
ans1
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.