frt: Computes Forward Recurrence Times from Two transformedTrain...

Description Usage Arguments Details Value Author(s) See Also Examples

View source: R/frt.R

Description

Computes the (transformed) time differences between spikes of a refTrain and the (next) ones of a testTrain. Both refTrain and testTrain should be transformedTrain objects.

Usage

1
2
frt(refTrain, testTrain)
refTrain %frt% testTrain

Arguments

refTrain

a transformedTrain object.

testTrain

a transformedTrain object.

Details

When two spike trains have been time transformed using the same procedure, which does make one of the trains (the testTrain) the realization a homogeneous Poisson process with rate 1, the elapsed time between the spikes of the other train (refTrain) and the ones of testTrain should be exponentially distributed with rate 1. These elapsed times are returned by frt.

Value

An object of class frt containing the elapsed times.

Author(s)

Christophe Pouzat christophe.pouzat@gmail.com

See Also

transformedTrain, plot.frt, summary.frt, mkGLMdf

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
## Not run: 
## Let us consider neuron 1 of the CAL2S data set
data(CAL2S)
CAL2S <- lapply(CAL2S,as.spikeTrain)
CAL2S[["neuron 1"]]
renewalTestPlot(CAL2S[["neuron 1"]])
summary(CAL2S[["neuron 1"]])
## Make a data frame with a 4 ms time resolution
cal2Sdf <- mkGLMdf(CAL2S,0.004,0,60)
## keep the part relative to neuron 1, 2 and 3 separately
n1.cal2sDF <- cal2Sdf[cal2Sdf$neuron=="1",]
n2.cal2sDF <- cal2Sdf[cal2Sdf$neuron=="2",]
n3.cal2sDF <- cal2Sdf[cal2Sdf$neuron=="3",]
## remove unnecessary data
rm(cal2Sdf)
## Extract the elapsed time since the second to last and
## third to last for neuron 1. Normalise the result. 
n1.cal2sDF[c("rlN.1","rsN.1","rtN.1")] <- brt4df(n1.cal2sDF,"lN.1",2,c("rlN.1","rsN.1","rtN.1"))
## load mgcv library
library(mgcv)
## fit a model with a tensorial product involving the last
## three spikes and using a cubic spline basis for the last two
## To gain time use a fixed df regression spline
n1S.fitA <- gam(event ~ te(rlN.1,rsN.1,bs="cr",fx=TRUE) + rtN.1,data=n1.cal2sDF,family=binomial(link="logit"))
## transform time
N1.Lambda <- transformedTrain(n1S.fitA)
## check out the resulting spike train using the fact
## that transformedTrain objects inherit from spikeTrain
## objects
N1.Lambda
## Use more formal checks
summary(N1.Lambda)
plot(N1.Lambda,which=c(1,2,4,5),ask=FALSE)
## Transform spike trains of neuron 2 and 3
N2.Lambda <- transformedTrain(n1S.fitA,n2.cal2sDF$event)
N3.Lambda <- transformedTrain(n1S.fitA,n3.cal2sDF$event)
## Check interactions
summary(N2.Lambda %frt% N1.Lambda)
summary(N3.Lambda %frt% N1.Lambda)
plot(N2.Lambda %frt% N1.Lambda,ask=FALSE)
plot(N3.Lambda %frt% N1.Lambda,ask=FALSE)

## End(Not run)

STAR documentation built on May 2, 2019, 11:44 a.m.