Description Usage Arguments Details Value Note Author(s) References See Also Examples
Some mainly graphical tools to probe interactions between 2 neurons recorded in the presence of a repeated stimulation.
1 2 3 4 5 6 7 8 9 10 11 | jsd(xRT, yRT, acquisitionWindow, xlab, ylab,
main, pch = ".", ...)
jpsth(xRT, yRT, xBreaks, yBreaks,
acquisitionWindow, nbEvtPerBin = 50)
## S3 method for class 'jpsth'
contour(x, xlab, ylab, main, ...)
## S3 method for class 'jpsth'
image(x, xlab, ylab, main, ...)
## S3 method for class 'jpsth'
persp(x, xlab, ylab, main, ...)
jpsth2df(object)
|
xRT |
a |
yRT |
a |
x, object |
|
xBreaks, yBreaks |
A single number (the bin width) or a vector defining bins boundaries on the X and Y axis. If missing a default is provided. |
acquisitionWindow |
a 2 elements vector specifying the begining
and the end of the acquisition. If missing values are obtained using
the |
nbEvtPerBin |
If both |
xlab |
a character (default value supplied). See |
ylab |
a character (default value supplied). See |
main |
a character (default value supplied). See |
pch |
the type of "points" displayed by |
... |
additional arguments passed to |
The joint scatter diagram was introduced by Gerstein and Perkel
(1972). The joint peristimulus time histogram is a binned version of
it (Aertsen et al, 1989). jpsth2df
allows the reformating of a jpsth
object in
order to compute a smooth version of it with
gssanova
, gssanova0
or gam
.
jsd
is used for its side effect, a plot is generated and
nothing is returned.
jpsth2df
returns a data.frame
with the following
variables: Count
, the counts per cell; X
, the position
of the cell on the X axis; Y
, the position of the cell on the Y
axis;
and attributes: xBreaks
, yBreaks
, xTotal
,
yTotal
, nbTrials
, acquisitionWindow
corresponding
to the components of its argument with the same name and
originalCall
corresponding to component call
.
jpsth
returns a list of class jpsth
with the following
components:
counts |
a matrix storing the counts per cell. |
density |
a matrix storing the density in each cell. |
xMids |
a vector containing the X positions of the cells. |
yMids |
a vector containing the Y positions of the cells. |
xBreaks |
a vector containing the bin boundaries of the cells along the X axis. |
yBreaks |
a vector containing the bin boundaries of the cells along the X axis. |
xTotal |
the total number of spikes of the "X" neuron. |
yTotal |
the total number of spikes of the "Y" neuron. |
xFreq |
the mean freqency of the "X" neuron. |
yFreq |
the mean freqency of the "Y" neuron. |
nbTrials |
the number of trials of |
acquisitionWindow |
the boundaries of the acquisition window. |
call |
the matched call. |
I use "joint scatter diagram" for what Gerstein and Perkel (1972) more properly call a "joint peristimulus time scatter diagram".
Christophe Pouzat christophe.pouzat@gmail.com
Gerstein, G. L. and Perkel, D. H. (1972) Mutual temporal relationships among neuronal spike trains. Statistical techniques for display and analysis. Biophys J 12: 453–473. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1484144
Aertsen, A. M., Gerstein, G. L., Habib, M. K., Palm, G. (1989) Dynamics of neuronal firing correlation: modulation of "effective connectivity". J Neurophysiol 61: 900–917. http://jn.physiology.org/cgi/content/abstract/61/5/900
lockedTrain
,
plot.lockedTrain
,
hist.lockedTrain
,
gsslockedTrain
,
plot.gsslockedTrain
,
gsslockedTrain0
,
plot.gsslockedTrain0
,
gamlockedTrain
,
plot.gamlockedTrain
,
contour
,
image
,
persp
,
attr
,
attributes
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 | ## load e070528citronellal data
data(e070528citronellal)
## plot a jsd with neuron 1 on X and neuron 2 on Y
jsd(e070528citronellal[[1]],e070528citronellal[[2]])
## now make the jpsth
j1.2 <- jpsth(e070528citronellal[[1]],e070528citronellal[[2]])
## make a contour plot
contour(j1.2)
## make an image plot
image(j1.2)
## make a persp plot
persp(j1.2)
## Not run:
## fit a gss model with interactions
## use a larger bin width for the jpsth
j1.2 <- jpsth(e070528citronellal[[1]],e070528citronellal[[2]],0.2,0.2)
## get a data frame
j1.2DF <- jpsth2df(j1.2)
## To save computation time start analyzing
## just before the stimulation time
j1.2DF <- j1.2DF[j1.2DF$X > 6 & j1.2DF$Y>6,]
gf <- gssanova(Count ~ X*Y, family="poisson", data=j1.2DF,seed=20061001)
## Use the project function of gss to check the significance
## of the interaction term
project(gf2,inc=c("X","Y"))
## End(Not run)
## Not run:
## fit a gam model assuming no interaction
## get a data frame
j1.2DF <- jpsth2df(j1.2)
fitNoI <- gam(Count ~ s(X,k=100,bs="cr") + s(Y,k=100,bs="cr"),data=j1.2DF,family=poisson())
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.