Description Usage Arguments Details Value Author(s) References See Also Examples
View source: R/gsslockedTrain.R
Smooths a lockedTrain
object using a smoothing spline
(gssanova
or gssanova0
) with the Poisson
family after binning the object.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 | gsslockedTrain(lockedTrain, bw = 0.001, ...)
gsslockedTrain0(lockedTrain, bw = 0.001, ...)
## S3 method for class 'gsslockedTrain'
print(x, ...)
## S3 method for class 'gsslockedTrain0'
print(x, ...)
## S3 method for class 'gsslockedTrain'
summary(object, ...)
## S3 method for class 'gsslockedTrain0'
summary(object, ...)
## S3 method for class 'gsslockedTrain'
plot(x, xlab, ylab, main, xlim, ylim, col, lwd, ...)
## S3 method for class 'gsslockedTrain0'
plot(x, xlab, ylab, main, xlim, ylim, col, lwd, ...)
|
lockedTrain |
a |
bw |
the bin width (in s) used to generate the observations on which the gss fit will be performed. See details below. |
x |
an |
object |
an |
xlim |
a numeric (default value supplied). See
|
ylim |
a numeric (default value supplied). See |
xlab |
a character (default value supplied). See |
ylab |
a character (default value supplied). See |
main |
a character (default value supplied). See |
lwd |
line width used to plot the estimated density. See |
col |
color used to plot the estimated density. See |
... |
in |
gsslockedTrain
calls internally gssanova
while
gsslockedTrain0
calls gssanova0
. See the respective
documentations and references therein for an explanation of the differences.
gsslockedTrain
and gsslockedTrain0
essentially generate
a smooth version of the
histogram obtained by hist.lockedTrain
. The Idea is to
build the histogram first with a "too" small bin width before fitting
a regression spline to it with a Poisson distribution of the observed
counts.
A list of class gsslockedTrain
, respectively gsslockedTrain0
, is returned by
gsslockedTrain
, respectively gsslockedTrain0
. These
lists have the following components:
gssFit |
the |
Time |
the vector of bin centers. |
nRef |
the number of spikes in the reference train. See
|
testFreq |
the mean frequency of the test neuron. See
|
bwV |
the vector of bin widths used. |
CCH |
a logical which is |
call |
the matched call. |
print.gsslockedTrain
returns the result of print
applied to the gssanova
object generated by gsslockedTrain
and stored in the the component gssFit
of its argument. The
same goes for print.gsslockedTrain0
.
summary.gsslockedTrain
returns the result of summary.gssanova
applied to the gssanova
object generated by gsspsth
and stored in the component gssFit
of its argument. The
same goes for summary.gsslockedTrain0
.
Christophe Pouzat christophe.pouzat@gmail.com
Gu C. (2002) Smoothing Spline ANOVA Models. Springer.
lockedTrain
,
plot.lockedTrain
,
gssanova
,
gssanova0
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 | ## Not run:
## load e070528spont data set
data(e070528spont)
## create a lockedTrain object with neuron 1 as reference
## and neuron 3 as test up to lags of +/- 250 ms
lt1.3 <- lockedTrain(e070528spont[[1]],e070528spont[[3]],laglim=c(-1,1)*0.25)
## look at the cross raster plot
lt1.3
## build a histogram of it using a 10 ms bin width
hist(lt1.3,bw=0.01)
## do it the smooth way
slt1.3 <- gsslockedTrain(lt1.3)
plot(slt1.3)
## do some check on the gss fit
summary(slt1.3)
## do the same with gsslockedTrain0
slt1.3 <- gsslockedTrain0(lt1.3)
plot(slt1.3)
## do some check on the gss fit
summary(slt1.3)
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.