Description Usage Arguments Details Value Note Author(s) References See Also Examples
Estimate log logistic model parameters by the maximum likelihood method using possibly censored data.
1 2 |
yi |
vector of (possibly binned) observations or a
|
ni |
vector of counts for each value of |
si |
vector of counts of uncensored observations for each
value of |
The MLE for the log logistic is not available in closed formed and
is therefore obtained numerically obtained by calling
optim
with the BFGS
method.
In order to ensure good behavior of the numerical optimization
routines, optimization is performed on the log of parameter
scale
.
Standard errors are obtained from the inverse of the observed information matrix at the MLE. They are transformed to go from the log scale used by the optimization routine to the requested parameterization.
A list of class durationFit
with the following components:
estimate |
the estimated parameters, a named vector. |
se |
the standard errors, a named vector. |
logLik |
the log likelihood at maximum. |
r |
a function returning the log of the relative likelihood function. |
mll |
a function returning the opposite of the log likelihood
function using the log of parameter |
call |
the matched call. |
The returned standard errors (component se
) are valid in the asymptotic limit. You
should plot contours using function r
in the returned list and
check that the contours are reasonably close to ellipses.
Christophe Pouzat christophe.pouzat@gmail.com
Lindsey, J.K. (2004) Introduction to Applied Statistics: A Modelling Approach. OUP.
Lindsey, J.K. (2004) The Statistical Analysis of Stochastic Processes in Time. CUP.
dllogis
,
invgaussMLE
,
gammaMLE
,
weibullMLE
,
rexpMLE
,
lnormMLE
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 | ## Not run:
## Simulate sample of size 100 from a log logisitic
## distribution
set.seed(1102006,"Mersenne-Twister")
sampleSize <- 100
location.true <- -2.7
scale.true <- 0.025
sampLL <- rllogis(sampleSize,location=location.true,scale=scale.true)
sampLLmleLL <- llogisMLE(sampLL)
rbind(est = sampLLmleLL$estimate,se = sampLLmleLL$se,true = c(location.true,scale.true))
## Estimate the log relative likelihood on a grid to plot contours
Loc <- seq(sampLLmleLL$estimate[1]-4*sampLLmleLL$se[1],
sampLLmleLL$estimate[1]+4*sampLLmleLL$se[1],
sampLLmleLL$se[1]/10)
Scale <- seq(sampLLmleLL$estimate[2]-4*sampLLmleLL$se[2],
sampLLmleLL$estimate[2]+4*sampLLmleLL$se[2],
sampLLmleLL$se[2]/10)
sampLLmleLLcontour <- sapply(Loc, function(m) sapply(Scale, function(s) sampLLmleLL$r(m,s)))
## plot contours using a linear scale for the parameters
## draw four contours corresponding to the following likelihood ratios:
## 0.5, 0.1, Chi2 with 2 df and p values of 0.95 and 0.99
X11(width=12,height=6)
layout(matrix(1:2,ncol=2))
contour(Loc,Scale,t(sampLLmleLLcontour),
levels=c(log(c(0.5,0.1)),-0.5*qchisq(c(0.95,0.99),df=2)),
labels=c("log(0.5)",
"log(0.1)",
"-1/2*P(Chi2=0.95)",
"-1/2*P(Chi2=0.99)"),
xlab="Location",ylab="Scale",
main="Log Relative Likelihood Contours"
)
points(sampLLmleLL$estimate[1],sampLLmleLL$estimate[2],pch=3)
points(location.true,scale.true,pch=16,col=2)
## The contours are not really symmetrical about the MLE we can try to
## replot them using a log scale for the parameters to see if that improves
## the situation
contour(Loc,log(Scale),t(sampLLmleLLcontour),
levels=c(log(c(0.5,0.1)),-0.5*qchisq(c(0.95,0.99),df=2)),
labels="",
xlab="log(Location)",ylab="log(Scale)",
main="Log Relative Likelihood Contours",
sub="log scale for parameter: scale")
points(sampLLmleLL$estimate[1],log(sampLLmleLL$estimate[2]),pch=3)
points(location.true,log(scale.true),pch=16,col=2)
## make a parametric boostrap to check the distribution of the deviance
nbReplicate <- 10000
sampleSize <- 100
system.time(
devianceLL100 <- replicate(nbReplicate,{
sampLL <- rllogis(sampleSize,location=location.true,scale=scale.true)
sampLLmleLL <- llogisMLE(sampLL)
-2*sampLLmleLL$r(location.true,scale.true)
}
)
)[3]
## Get 95 and 99
ci <- sapply(1:nbReplicate,
function(idx) qchisq(qbeta(c(0.005,0.025,0.975,0.995),
idx,
nbReplicate-idx+1),
df=2)
)
## make QQ plot
X <- qchisq(ppoints(nbReplicate),df=2)
Y <- sort(devianceLL100)
X11()
plot(X,Y,type="n",
xlab=expression(paste(chi[2]^2," quantiles")),
ylab="MC quantiles",
main="Deviance with true parameters after ML fit of log logistic data",
sub=paste("sample size:", sampleSize,"MC replicates:", nbReplicate)
)
abline(a=0,b=1)
lines(X,ci[1,],lty=2)
lines(X,ci[2,],lty=2)
lines(X,ci[3,],lty=2)
lines(X,ci[4,],lty=2)
lines(X,Y,col=2)
## End(Not run)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.