ABM: Brownian motion, Brownian bridge, geometric Brownian motion,...

Description Usage Arguments Details Value Author(s) References See Also Examples

View source: R/ABM.R

Description

The (S3) generic function for simulation of brownian motion, brownian bridge, geometric brownian motion, and arithmetic brownian motion.

Usage

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
BM(N, ...)
BB(N, ...)
GBM(N, ...)
ABM(N, ...)

## Default S3 method:
BM(N =1000,M=1,x0=0,t0=0,T=1,Dt=NULL, ...)
## Default S3 method:
BB(N =1000,M=1,x0=0,y=0,t0=0,T=1,Dt=NULL, ...)
## Default S3 method:
GBM(N =1000,M=1,x0=1,t0=0,T=1,Dt=NULL,theta=1,sigma=1, ...)
## Default S3 method:
ABM(N =1000,M=1,x0=0,t0=0,T=1,Dt=NULL,theta=1,sigma=1, ...)

Arguments

N

number of simulation steps.

M

number of trajectories.

x0

initial value of the process at time \code{t0}.

y

terminal value of the process at time \code{T} of the BB.

t0

initial time.

T

final time.

Dt

time step of the simulation (discretization). If it is NULL a default Dt = (T-t0)/N.

theta

the interest rate of the ABM and GBM.

sigma

the volatility of the ABM and GBM.

...

potentially further arguments for (non-default) methods.

Details

The function BM returns a trajectory of the standard Brownian motion (Wiener process) in the time interval [t0,T]. Indeed, for W(dt) it holds true that W(dt) = W(dt) - W(0) -> N(0,dt) -> sqrt(dt) * N(0,1), where N(0,1) is normal distribution Normal.

The function BB returns a trajectory of the Brownian bridge starting at x0 at time t0 and ending at y at time T; i.e., the diffusion process solution of stochastic differential equation:

dX(t) = ((y-X(t))/(T-t)) dt + dW(t)

The function GBM returns a trajectory of the geometric Brownian motion starting at x0 at time t0; i.e., the diffusion process solution of stochastic differential equation:

dX(t) = theta X(t) dt + sigma X(t) dW(t)

The function ABM returns a trajectory of the arithmetic Brownian motion starting at x0 at time t0; i.e.,; the diffusion process solution of stochastic differential equation:

dX(t) = theta dt + sigma dW(t)

Value

X

an visible ts object.

Author(s)

A.C. Guidoum, K. Boukhetala.

References

Allen, E. (2007). Modeling with Ito stochastic differential equations. Springer-Verlag, New York.

Jedrzejewski, F. (2009). Modeles aleatoires et physique probabiliste. Springer-Verlag, New York.

Henderson, D and Plaschko, P. (2006). Stochastic differential equations in science and engineering. World Scientific.

See Also

This functions BM, BBridge and GBM are available in other packages such as "sde".

Examples

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
op <- par(mfrow = c(2, 2))

## Brownian motion
set.seed(1234)
X <- BM(M = 100)
plot(X,plot.type="single")
lines(as.vector(time(X)),rowMeans(X),col="red")

## Brownian bridge
set.seed(1234)
X <- BB(M =100)
plot(X,plot.type="single")
lines(as.vector(time(X)),rowMeans(X),col="red")

## Geometric Brownian motion
set.seed(1234)
X <- GBM(M = 100)
plot(X,plot.type="single")
lines(as.vector(time(X)),rowMeans(X),col="red")

## Arithmetic Brownian motion
set.seed(1234)
X <- ABM(M = 100)
plot(X,plot.type="single")
lines(as.vector(time(X)),rowMeans(X),col="red")

par(op)

Sim.DiffProc documentation built on Nov. 8, 2020, 4:27 p.m.