snssde1d | R Documentation |
The (S3) generic function snssde1d
of simulation of solution to 1-dim stochastic differential equation of Itô or Stratonovich type, with different methods.
snssde1d(N, ...)
## Default S3 method:
snssde1d(N = 1000, M = 1, x0 = 0, t0 = 0, T = 1, Dt,
drift, diffusion, alpha = 0.5, mu = 0.5, type = c("ito", "str"),
method = c("euler", "milstein", "predcorr", "smilstein", "taylor",
"heun", "rk1", "rk2", "rk3"), ...)
## S3 method for class 'snssde1d'
summary(object, at ,digits=NULL, ...)
## S3 method for class 'snssde1d'
time(x, ...)
## S3 method for class 'snssde1d'
mean(x, at, ...)
## S3 method for class 'snssde1d'
Median(x, at, ...)
## S3 method for class 'snssde1d'
Mode(x, at, ...)
## S3 method for class 'snssde1d'
quantile(x, at, ...)
## S3 method for class 'snssde1d'
kurtosis(x, at, ...)
## S3 method for class 'snssde1d'
min(x, at, ...)
## S3 method for class 'snssde1d'
max(x, at, ...)
## S3 method for class 'snssde1d'
skewness(x, at, ...)
## S3 method for class 'snssde1d'
moment(x, at, ...)
## S3 method for class 'snssde1d'
cv(x, at, ...)
## S3 method for class 'snssde1d'
bconfint(x, at, ...)
## S3 method for class 'snssde1d'
plot(x, ...)
## S3 method for class 'snssde1d'
lines(x, ...)
## S3 method for class 'snssde1d'
points(x, ...)
N |
number of simulation steps. |
M |
number of trajectories (Monte-Carlo). |
x0 |
initial value of the process at time |
t0 |
initial time. |
T |
ending time. |
Dt |
time step of the simulation (discretization). If it is |
drift |
drift coefficient: an |
diffusion |
diffusion coefficient: an |
alpha , mu |
weight of the predictor-corrector scheme; the default |
type |
if |
method |
numerical methods of simulation, the default |
x , object |
an object inheriting from class |
at |
time between |
digits |
integer, used for number formatting. |
... |
potentially further arguments for (non-default) methods. |
The function snssde1d
returns a ts
x of length N+1
; i.e. solution of the sde of Ito or
Stratonovich types; If Dt
is not specified, then the best discretization \Delta t = \frac{T-t_{0}}{N}
.
The Ito stochastic differential equation is:
dX(t) = a(t,X(t)) dt + b(t,X(t)) dW(t)
Stratonovich sde :
dX(t) = a(t,X(t)) dt + b(t,X(t)) \circ dW(t)
The methods of approximation are classified according to their different properties. Mainly two criteria of optimality are used in the literature: the strong
and the weak (orders of) convergence. The method
of simulation can be one among: Euler-Maruyama Order 0.5
, Milstein Order 1
, Milstein Second-Order
,
Predictor-Corrector method
, Itô-Taylor Order 1.5
, Heun Order 2
and Runge-Kutta Order 1, 2 and 3
.
An overview of this package, see browseVignettes('Sim.DiffProc')
for more informations.
snssde1d
returns an object inheriting from class
"snssde1d"
.
X |
an invisible |
drift |
drift coefficient. |
diffusion |
diffusion coefficient. |
type |
type of sde. |
method |
the numerical method used. |
A.C. Guidoum, K. Boukhetala.
Guidoum AC, Boukhetala K (2020). "Performing Parallel Monte Carlo and Moment Equations Methods for Itô and Stratonovich Stochastic Differential Systems: R Package Sim.DiffProc". Journal of Statistical Software, 96(2), 1–82. doi:10.18637/jss.v096.i02
Friedman, A. (1975). Stochastic differential equations and applications. Volume 1, ACADEMIC PRESS.
Henderson, D. and Plaschko,P. (2006). Stochastic differential equations in science and engineering. World Scientific.
Allen, E. (2007). Modeling with Ito stochastic differential equations. Springer-Verlag.
Jedrzejewski, F. (2009). Modeles aleatoires et physique probabiliste. Springer-Verlag.
Iacus, S.M. (2008). Simulation and inference for stochastic differential equations: with R examples. Springer-Verlag, New York.
Kloeden, P.E, and Platen, E. (1989). A survey of numerical methods for stochastic differential equations. Stochastic Hydrology and Hydraulics, 3, 155–178.
Kloeden, P.E, and Platen, E. (1991a). Relations between multiple ito and stratonovich integrals. Stochastic Analysis and Applications, 9(3), 311–321.
Kloeden, P.E, and Platen, E. (1991b). Stratonovich and ito stochastic taylor expansions. Mathematische Nachrichten, 151, 33–50.
Kloeden, P.E, and Platen, E. (1995). Numerical Solution of Stochastic Differential Equations. Springer-Verlag, New York.
Oksendal, B. (2000). Stochastic Differential Equations: An Introduction with Applications. 5th edn. Springer-Verlag, Berlin.
Platen, E. (1980). Weak convergence of approximations of ito integral equations. Z Angew Math Mech. 60, 609–614.
Platen, E. and Bruti-Liberati, N. (2010). Numerical Solution of Stochastic Differential Equations with Jumps in Finance. Springer-Verlag, New York
Saito, Y, and Mitsui, T. (1993). Simulation of Stochastic Differential Equations. The Annals of the Institute of Statistical Mathematics, 3, 419–432.
snssde2d
and snssde3d
for 2 and 3-dim sde.
sde.sim
in package "sde".
simulate
in package "yuima".
## Example 1: Ito sde
## dX(t) = 2*(3-X(t)) dt + 2*X(t) dW(t)
set.seed(1234)
f <- expression(2*(3-x) )
g <- expression(1)
mod1 <- snssde1d(drift=f,diffusion=g,M=4000,x0=10,Dt=0.01)
mod1
summary(mod1)
## Not run:
plot(mod1)
lines(time(mod1),apply(mod1$X,1,mean),col=2,lwd=2)
lines(time(mod1),apply(mod1$X,1,bconfint,level=0.95)[1,],col=4,lwd=2)
lines(time(mod1),apply(mod1$X,1,bconfint,level=0.95)[2,],col=4,lwd=2)
legend("topright",c("mean path",paste("bound of", 95," percent confidence")),
inset = .01,col=c(2,4),lwd=2,cex=0.8)
## End(Not run)
## Example 2: Stratonovich sde
## dX(t) = ((2-X(t))/(2-t)) dt + X(t) o dW(t)
set.seed(1234)
f <- expression((2-x)/(2-t))
g <- expression(x)
mod2 <- snssde1d(type="str",drift=f,diffusion=g,M=4000,x0=1, method="milstein")
mod2
summary(mod2,at = 0.25)
summary(mod2,at = 1)
## Not run:
plot(mod2)
lines(time(mod2),apply(mod2$X,1,mean),col=2,lwd=2)
lines(time(mod2),apply(mod2$X,1,bconfint,level=0.95)[1,],col=4,lwd=2)
lines(time(mod2),apply(mod2$X,1,bconfint,level=0.95)[2,],col=4,lwd=2)
legend("topleft",c("mean path",paste("bound of", 95," percent confidence")),
inset = .01,col=c(2,4),lwd=2,cex=0.8)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.