st.int | R Documentation |
The (S3) generic function st.int
of simulation of stochastic integrals of Itô or Stratonovich type.
st.int(expr, ...)
## Default S3 method:
st.int(expr, lower = 0, upper = 1, M = 1, subdivisions = 1000L,
type = c("ito", "str"), ...)
## S3 method for class 'st.int'
summary(object, at ,digits=NULL, ...)
## S3 method for class 'st.int'
time(x, ...)
## S3 method for class 'st.int'
mean(x, at, ...)
## S3 method for class 'st.int'
Median(x, at, ...)
## S3 method for class 'st.int'
Mode(x, at, ...)
## S3 method for class 'st.int'
quantile(x, at, ...)
## S3 method for class 'st.int'
kurtosis(x, at, ...)
## S3 method for class 'st.int'
min(x, at, ...)
## S3 method for class 'st.int'
max(x, at, ...)
## S3 method for class 'st.int'
skewness(x, at, ...)
## S3 method for class 'st.int'
moment(x, at, ...)
## S3 method for class 'st.int'
cv(x, at, ...)
## S3 method for class 'st.int'
bconfint(x, at, ...)
## S3 method for class 'st.int'
plot(x, ...)
## S3 method for class 'st.int'
lines(x, ...)
## S3 method for class 'st.int'
points(x, ...)
expr |
an |
lower , upper |
the lower and upper end points of the interval to be integrate. |
M |
number of trajectories (Monte-Carlo). |
subdivisions |
the maximum number of subintervals. |
type |
Itô or Stratonovich integration. |
x , object |
an object inheriting from class |
at |
time between |
digits |
integer, used for number formatting. |
... |
potentially further arguments for (non-default) methods. |
The function st.int
returns a ts
x of length N+1
; i.e. simulation of stochastic integrals
of Itô or Stratonovich type.
The Itô interpretation is:
\int_{t_{0}}^{t} f(s) dW_{s} = \lim_{N \rightarrow \infty} \sum_{i=1}^{N} f(t_{i-1})(W_{t_{i}}-W_{t_{i-1}})
The Stratonovich interpretation is:
\int_{t_{0}}^{t} f(s) \circ dW_{s} = \lim_{N \rightarrow \infty} \sum_{i=1}^{N} f\left(\frac{t_{i}+t_{i-1}}{2}\right)(W_{t_{i}}-W_{t_{i-1}})
An overview of this package, see browseVignettes('Sim.DiffProc')
for more informations.
st.int
returns an object inheriting from class
"st.int"
.
X |
the final simulation of the integral, an invisible |
fun |
function to be integrated. |
type |
type of stochastic integral. |
subdivisions |
the number of subintervals produced in the subdivision process. |
A.C. Guidoum, K. Boukhetala.
Ito, K. (1944). Stochastic integral. Proc. Jap. Acad, Tokyo, 20, 19–529.
Stratonovich RL (1966). New Representation for Stochastic Integrals and Equations. SIAM Journal on Control, 4(2), 362–371.
Kloeden, P.E, and Platen, E. (1995). Numerical Solution of Stochastic Differential Equations. Springer-Verlag, New York.
Oksendal, B. (2000). Stochastic Differential Equations: An Introduction with Applications. 5th edn. Springer-Verlag, Berlin.
snssde1d
, snssde2d
and snssde3d
for 1,2 and 3-dim sde.
## Example 1: Ito integral
## f(t,w(t)) = int(exp(w(t) - 0.5*t) * dw(s)) with t in [0,1]
set.seed(1234)
f <- expression( exp(w-0.5*t) )
mod1 <- st.int(expr=f,type="ito",M=50,lower=0,upper=1)
mod1
summary(mod1)
## Display
plot(mod1)
lines(time(mod1),apply(mod1$X,1,mean),col=2,lwd=2)
lines(time(mod1),apply(mod1$X,1,bconfint,level=0.95)[1,],col=4,lwd=2)
lines(time(mod1),apply(mod1$X,1,bconfint,level=0.95)[2,],col=4,lwd=2)
legend("topleft",c("mean path",paste("bound of", 95," percent confidence")),
inset = .01,col=c(2,4),lwd=2,cex=0.8)
## Example 2: Stratonovich integral
## f(t,w(t)) = int(w(s) o dw(s)) with t in [0,1]
set.seed(1234)
g <- expression( w )
mod2 <- st.int(expr=g,type="str",M=50,lower=0,upper=1)
mod2
summary(mod2)
## Display
plot(mod2)
lines(time(mod2),apply(mod2$X,1,mean),col=2,lwd=2)
lines(time(mod2),apply(mod2$X,1,bconfint,level=0.95)[1,],col=4,lwd=2)
lines(time(mod2),apply(mod2$X,1,bconfint,level=0.95)[2,],col=4,lwd=2)
legend("topleft",c("mean path",paste("bound of", 95," percent confidence")),
inset = .01,col=c(2,4),lwd=2,cex=0.8)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.