fitsde | R Documentation |
The (S3) generic function "fitsde"
of estimate drift and diffusion parameters by the method of maximum pseudo-likelihood
of the 1-dim stochastic differential equation.
fitsde(data, ...)
## Default S3 method:
fitsde(data, drift, diffusion, start = list(), pmle = c("euler","kessler",
"ozaki", "shoji"), optim.method = "L-BFGS-B",
lower = -Inf, upper = Inf, ...)
## S3 method for class 'fitsde'
summary(object, ...)
## S3 method for class 'fitsde'
coef(object, ...)
## S3 method for class 'fitsde'
vcov(object, ...)
## S3 method for class 'fitsde'
logLik(object, ...)
## S3 method for class 'fitsde'
AIC(object, ...)
## S3 method for class 'fitsde'
BIC(object, ...)
## S3 method for class 'fitsde'
confint(object,parm, level=0.95, ...)
data |
a univariate time series ( |
drift |
drift coefficient: an |
diffusion |
diffusion coefficient: an |
start |
named list of starting values for optimizer. See Examples. |
pmle |
a |
optim.method |
the |
lower , upper |
bounds on the variables for the |
object |
an object inheriting from class |
parm |
a specification of which parameters are to be given confidence intervals, either a vector of names (example |
level |
the confidence level required. |
... |
potentially further arguments to pass to |
The function fitsde
returns a pseudo-likelihood estimators of the drift and diffusion parameters in 1-dim stochastic
differential equation. The optim
optimizer is used to find the maximum of the negative log pseudo-likelihood. An
approximate covariance matrix for the parameters is obtained by inverting the Hessian matrix at the optimum.
The pmle
of pseudo-likelihood can be one among:"euler"
: Euler pseudo-likelihood), "ozaki"
: Ozaki pseudo-likelihood,
"shoji"
: Shoji pseudo-likelihood, and "kessler"
: Kessler pseudo-likelihood.
An overview of this package, see browseVignettes('Sim.DiffProc')
for more informations.
fitsde
returns an object inheriting from class
"fitsde"
.
A.C. Guidoum, K. Boukhetala.
Kessler, M. (1997). Estimation of an ergodic diffusion from discrete observations. Scand. J. Statist., 24, 211-229.
Iacus, S.M. (2008). Simulation and inference for stochastic differential equations: with R examples. Springer-Verlag, New York.
Iacus, S.M. (2009). sde: Simulation and Inference for Stochastic Differential Equations. R package version 2.0.10.
Iacus, S.M. and all. (2014). The yuima Project: A Computational Framework for Simulation and Inference of Stochastic Differential Equations. Journal of Statistical Software, 57(4).
Ozaki, T. (1992). A bridge between nonlinear time series models and nonlinear stochastic dynamical systems: A local linearization approach. Statistica Sinica, 2, 25-83.
Shoji, L., Ozaki, T. (1998). Estimation for nonlinear stochastic differential equations by a local linearization method. Stochastic Analysis and Applications, 16, 733-752.
Dacunha, D.C. and Florens, D.Z. (1986). Estimation of the Coefficients of a Diffusion from Discrete Observations. Stochastics. 19, 263–284.
Dohnal, G. (1987). On estimating the diffusion coefficient. J. Appl.Prob., 24, 105–114.
Genon, V.C. (1990). Maximum constrast estimation for diffusion processes from discrete observation. Statistics, 21, 99–116.
Nicolau, J. (2004). Introduction to the estimation of stochastic differential equations based on discrete observations. Autumn School and International Conference, Stochastic Finance.
Ait-Sahalia, Y. (1999). Transition densities for interest rate and other nonlinear diffusions. The Journal of Finance, 54, 1361–1395.
Ait-Sahalia, Y. (2002). Maximum likelihood estimation of discretely sampled diffusions: a closed-form approximation approach. Econometrica. 70, 223–262.
B.L.S. Prakasa Rao. (1999). Statistical Inference for Diffusion Type Processes. Arnold, London and Oxford University press, New York.
Kutoyants, Y.A. (2004). Statistical Inference for Ergodic Diffusion Processes. Springer, London.
dcEuler
, dcElerian
, dcOzaki
, dcShoji
,
dcKessler
and dcSim
for approximated conditional law of a diffusion process. gmm
estimator of the generalized method of moments by Hansen, and HPloglik
these functions are useful
to calculate approximated maximum likelihood estimators when the transition density of the process is not known, in package "sde".
qmle
in package "yuima" calculate quasi-likelihood and ML estimator of least squares estimator.
##### Example 1:
## Modele GBM (BS)
## dX(t) = theta1 * X(t) * dt + theta2 * x * dW(t)
## Simulation of data
set.seed(1234)
X <- GBM(N =1000,theta=4,sigma=1)
## Estimation: true theta=c(4,1)
fx <- expression(theta[1]*x)
gx <- expression(theta[2]*x)
fres <- fitsde(data=X,drift=fx,diffusion=gx,start = list(theta1=1,theta2=1),
lower=c(0,0))
fres
summary(fres)
coef(fres)
logLik(fres)
AIC(fres)
BIC(fres)
vcov(fres)
confint(fres,level=0.95)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.