| rsde3d | R Documentation | 
Transition density and random generation for the joint and marginal of (X(t-s),Y(t-s),Z(t-s) | X(s)=x0,Y(s)=y0,Z(s)=z0) of the SDE's 3-d.
rsde3d(object, ...)
dsde3d(object, ...)
## Default S3 method:
rsde3d(object, at, ...)
## Default S3 method:
dsde3d(object, pdf=c("Joint","Marginal"), at, ...)
## S3 method for class 'dsde3d'
plot(x,display="rgl",hist=FALSE,...)
| object | an object inheriting from class  | 
| at | time between  | 
| pdf | probability density function  | 
| x | an object inheriting from class  | 
| display | display plots. | 
| hist | if  | 
| ... | potentially arguments to be passed to methods, such as  | 
The function rsde3d returns a M random variable x_{t=at},y_{t=at},z_{t=at} realize at time t=at.
 
And dsde3d returns a trivariate kernel density approximation for (X(t-s),Y(t-s),Z(t-s) | X(s)=x0,Y(s)=y0,Z(s)=z0). with t= at  is a fixed time between t0 and T.
 
An overview of this package, see browseVignettes('Sim.DiffProc') for more informations.
| dsde3d() | gives the trivariate density approximation  | 
| rsde3d() | generates random of the  | 
A.C. Guidoum, K. Boukhetala.
kde Kernel density estimate for 1- to 6-dimensional data in "ks" package.
sm.density Nonparametric density estimation in one, two or three dimensions in "sm" package.
kde3d Compute a three dimension kernel density estimate in "misc3d" package.
rng random number generators in "yuima" package. 
rcBS, rcCIR, rcOU and rsOU in package "sde". 
## Example 1: Ito sde
## dX(t) = (2*(Y(t)>0)-2*(Z(t)<=0)) dt + 0.2 * dW1(t) 
## dY(t) = -2*Y(t) dt + 0.2 * dW2(t) 
## dZ(t) = -2*Z(t) dt + 0.2 * dW3(t)        
## W1(t), W2(t) and W3(t) three independent Brownian motion
set.seed(1234)
fx <- expression(2*(y>0)-2*(z<=0) , -2*y, -2*z)
gx <- rep(expression(0.2),3)
mod3d1 <- snssde3d(x0=c(0,2,-2),drift=fx,diffusion=gx,M=1000,Dt=0.003)
# random at t= 0.75
r3d1 <- rsde3d(mod3d1,at=0.75)
summary(r3d1)
# Marginal transition density at t=0.75, t0=0
denM <- dsde3d(mod3d1,pdf="M",at=0.75)
denM
plot(denM)
# for Joint transition density at t=0.75;t0=0 
# Multiple isosurfaces
## Not run: 
denJ <- dsde3d(mod3d1,pdf="J", at= 0.75)
denJ
plot(denJ,display="rgl")
## End(Not run)
## Example 2: Stratonovich sde
## dX(t) = Y(t)* dt + X(t) o dW1(t)          
## dY(t) = (4*( 1-X(t)^2 )* Y(t) - X(t))* dt + 0.2 o dW2(t)
## dZ(t) = (4*( 1-X(t)^2 )* Z(t) - X(t))* dt + 0.2 o dW3(t)
set.seed(1234)
fx <- expression( y , (4*( 1-x^2 )* y - x), (4*( 1-x^2 )* z - x))
gx <- expression( x , 0.2, 0.2)
mod3d2 <- snssde3d(drift=fx,diffusion=gx,M=1000,type="str")
# random 
r3d2 <- rsde3d(mod3d2)
summary(r3d2)
# Marginal transition density at t=1, t0=0
denM <- dsde3d(mod3d2,pdf="M")
denM
plot(denM)
# for Joint transition density at t=1;t0=0
# Multiple isosurfaces
## Not run: 
denJ <- dsde3d(mod3d2,pdf="J")
denJ
plot(denJ,display="rgl")
## End(Not run)
## Example 3: Tivariate Transition Density of 3 Brownian motion (W1(t),W2(t),W3(t)) in [0,1]
## Not run: 
B3d <- snssde3d(drift=rep(expression(0),3),diffusion=rep(expression(1),3),M=500)
for (i in seq(B3d$Dt,B3d$T,by=B3d$Dt)){
plot(dsde3d(B3d, at = i,pdf="J"),box=F,main=paste0('Transition Density t = ',i))
}
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.