View source: R/Probability_parameter.R
| Parameter_Calculate | R Documentation |
This function automatically determines optimal min_expression, specificity_weight, and threshold parameters for single-cell data analysis based on dataset characteristics using adaptive algorithms derived from empirical analysis of single-cell datasets.
Parameter_Calculate(
seurat_obj,
features = NULL,
assay = NULL,
cluster_col = NULL,
n_celltypes = 50,
verbose = TRUE
)
seurat_obj |
A Seurat object containing single-cell data |
features |
Character vector of feature names (genes) to analyze. If NULL, will use highly variable features from the Seurat object. |
assay |
Name of assay to use (default: default assay) |
cluster_col |
Column name in metadata containing cluster information |
n_celltypes |
Expected number of cell types in marker database (default: 50). Used for threshold recommendation calculation. |
verbose |
Whether to print progress messages (default: TRUE) |
A list containing:
min_expression: Recommended expression threshold
specificity_weight: Recommended specificity weight
threshold: Recommended probability threshold for candidate selection
dataset_features: Extracted dataset characteristics
parameter_rationale: Explanation of parameter choices
Other Section_3_Automated_Annotation:
Celltype_Annotation(),
Celltype_Annotation_PerCell(),
Celltype_Calculate(),
Celltype_Calculate_PerCell(),
Celltype_Verification(),
Celltype_Verification_PerCell(),
percell_workflow
## Not run:
SlimR_params <- Parameter_Calculate(
seurat_obj = sce,
features = c("CD3E", "CD4", "CD8A"),
assay = "RNA",
cluster_col = "seurat_clusters",
n_celltypes = 98,
verbose = TRUE
)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.