extract_dataset_features: Extract Dataset Characteristics for Machine Learning (Use in...

View source: R/Probability_parameter.R

extract_dataset_featuresR Documentation

Extract Dataset Characteristics for Machine Learning (Use in package)

Description

Computes various statistical features from single-cell data that are used as input for the parameter prediction model.

Usage

extract_dataset_features(
  seurat_obj,
  features,
  assay = NULL,
  cluster_col = NULL
)

Arguments

seurat_obj

Seurat object

features

Features to analyze

assay

Assay name

cluster_col

Cluster column name

Value

List of dataset characteristics including expression statistics, variability measures, and cluster properties

See Also

Other Section_1_Functions_Use_in_Package: calculate_cluster_variability(), calculate_expression(), calculate_expression_skewness(), calculate_probability(), estimate_batch_effect(), generate_training_data(), postprocess_parameters(), predict_optimal_parameters(), train_parameter_model()


SlimR documentation built on Dec. 17, 2025, 5:09 p.m.