Nothing
#' Calculates features from 30-min smart meter data
#'
#' @param B
#' a vector with length 2*24*7 = 336 measurements in one day in seven days a week
#' @param rowname
#' the row name of the resulting feature vector
#' @param featsCoarserGranularity
#' are the features of finer granularity levels also to be calculated (TRUE/FALSE)
#' @param replace_NA_with_defaults
#' replaces missing (NA) or infinite values that may appear during calculation
#' with default values
#' @return a data.frame with the calculated features as columns and a specified
#' rowname, if given
#' @author Konstantin Hopf \email{konstantin.hopf@uni-bamberg.de}
#' @references Hopf, K. (2019). Predictive Analytics for Energy Efficiency and
#' Energy Retailing (1st ed.). Bamberg: University of Bamberg.
#' \url{https://doi.org/10.20378/irbo-54833}
#' @references Hopf, K., Sodenkamp, M., Kozlovskiy, I., & Staake, T. (2014).
#' Feature extraction and filtering for household classification based on
#' smart electricity meter data. Computer Science-Research and Development,
#' (31) 3, 141–148. \url{https://doi.org/10.1007/s00450-014-0294-4}
#' @references Hopf, K., Sodenkamp, M., & Staake, T. (2018). Enhancing energy
#' efficiency in the residential sector with smart meter data analytics.
#' Electronic Markets, 28(4). \url{https://doi.org/10.1007/s12525-018-0290-9}
#' @references Beckel, C., Sadamori, L., Staake, T., & Santini, S. (2014).
#' Revealing household characteristics from smart meter data. Energy, 78,
#' 397–410. \url{https://doi.org/10.1016/j.energy.2014.10.025}
#'
#' @examples
#' # Create a random time series of 30-minute smart meter data (336 measurements per week)
#' smd <- runif(n=336, min=0, max=2)
#' # Calculate the smart meter data features
#' calc_features30_consumption(smd)
#'
#' @importFrom stats quantile var cor lowess ts acf stl na.pass na.omit
#' @importFrom utils combn
#' @export
calc_features30_consumption <- function(B, rowname=NULL,
featsCoarserGranularity=FALSE,
replace_NA_with_defaults=TRUE){
B <- as.numeric(B)
#day matrix with 7 cols
dm30=matrix(B,ncol=7)
#initialize the data.frame and calculate finer granularity features
if(featsCoarserGranularity){
# the data.frame is initialized in another feature calculation method
#TODO: rewrite day/daynt function for 168 measurements or 60min for 336 measurements
smd60 = B[seq(from=1, to = 335, by=2)] + B[seq(from=2, to=336, by=2)]
f60 <- calc_features60_consumption(smd60, rowname,
replace_NA_with_defaults)
fnt <- calc_featuresnt_consumption(B, rowname,
featsCoarserGranularity,
replace_NA_with_defaults)
D <- cbind(fnt,f60)
D$c30_week <- mean(dm30, na.rm=TRUE)
} else {
# initialization of the dataframe
D <- data.frame(c30_week=mean(dm30, na.rm=TRUE))
if(!is.null(rowname)) row.names(D) <- rowname
}
#
# daytime consumption and relations
#
D$c30_weekday <- mean(dm30[,1:5], na.rm = TRUE)
D$c30_weekend <- mean(dm30[,6:7], na.rm = TRUE)
D$c30_night <- mean(dm30[3:12,1:7], na.rm = TRUE)
D$c30_morning <- mean(dm30[13:20,1:7], na.rm = TRUE)
D$c30_noon <- mean(dm30[21:28,1:7], na.rm = TRUE)
D$c30_afternoon <- mean(dm30[29:36,1:7], na.rm = TRUE)
D$c30_evening <- mean(dm30[37:44,1:7], na.rm = TRUE)
#consumption separated by weekday / weekend
D$c30_we_night <- mean(dm30[3:12,6:7], na.rm = TRUE)
D$c30_wd_night <- mean(dm30[3:12,1:5], na.rm = TRUE)
D$r30_night_wd_we <- D$c30_wd_night / D$c30_we_night
D$c30_we_morning <- mean(dm30[13:20,6:7], na.rm = TRUE)
D$c30_wd_morning <- mean(dm30[13:20,1:5], na.rm = TRUE)
D$r30_morning_wd_we <- D$c30_wd_morning / D$c30_we_morning
D$c30_we_noon <- mean(dm30[21:28,6:7], na.rm = TRUE)
D$c30_wd_noon <- mean(dm30[21:28,1:5], na.rm = TRUE)
D$r30_noon_wd_we <- D$c30_wd_noon / D$c30_we_noon
D$c30_we_afternoon <- mean(dm30[29:36,6:7], na.rm = TRUE)
D$c30_wd_afternoon <- mean(dm30[29:36,1:5], na.rm = TRUE)
D$r30_afternoon_wd_we <- D$c30_wd_afternoon / D$c30_we_afternoon
D$c30_we_evening <- mean(dm30[37:44,6:7], na.rm = TRUE)
D$c30_wd_evening <- mean(dm30[37:44,1:5], na.rm = TRUE)
D$r30_evening_wd_we <- D$c30_wd_evening / D$c30_we_evening
#browser()
#relations
D$r30_night_day <- D$c30_night / D$c30_week
D$r30_we_night_day <- D$c30_we_night / D$c30_weekend
D$r30_wd_night_day <- D$c30_wd_night / D$c30_weekday
D$r30_morning_noon <- D$c30_morning / D$c30_noon
D$r30_we_morning_noon <- D$c30_we_morning / D$c30_we_noon
D$r30_wd_morning_noon <- D$c30_wd_morning / D$c30_wd_noon
D$r30_evening_noon <- D$c30_evening / D$c30_noon
D$r30_we_evening_noon <- D$c30_we_evening / D$c30_we_noon
D$r30_wd_evening_noon <- D$c30_wd_evening / D$c30_wd_noon
#
# statistical features
#
suppressWarnings({
D$s30_min <- min(dm30[1:336], na.rm = TRUE)
D$s30_max <- max(dm30[1:336], na.rm = TRUE)
})
D$r30_mean_max <- D$c30_week / D$s30_max
D$r30_min_mean <- D$s30_min / D$c30_week
D$s30_we_max <- max(dm30[241:336], na.rm = TRUE)
D$s30_we_min <- min(dm30[241:336], na.rm = TRUE)
D$s30_wd_max <- max(dm30[1:240], na.rm = TRUE)
D$s30_wd_min <- min(dm30[1:240], na.rm = TRUE)
D$r30_min_wd_we <- ifelse( D$s30_we_min>0, D$s30_wd_min / D$s30_we_min ,1)
D$r30_max_wd_we <- D$s30_wd_max / D$s30_we_max
q <- quantile(dm30, na.rm = TRUE)
#D$s_min <- q[1]
D$s30_q1 <- q[2]
D$s30_q2 <- q[3]
D$s30_q3 <- q[4]
#D$s_max <- q[5]
#the average minimum in the week
a <- c(min(dm30[,1], na.rm = TRUE), min(dm30[,2], na.rm = TRUE), min(dm30[,3], na.rm = TRUE), min(dm30[,4], na.rm = TRUE),
min(dm30[,5], na.rm = TRUE), min(dm30[,6], na.rm = TRUE), min(dm30[,7], na.rm = TRUE))
a <- ifelse(is.infinite(a), NA, a)
D$s30_min_avg <- mean(a, na.rm = TRUE)
#the average maximum in the week
a <- c(max(dm30[,1], na.rm = TRUE), max(dm30[,2], na.rm = TRUE), max(dm30[,3], na.rm = TRUE), max(dm30[,4], na.rm = TRUE),
max(dm30[,5], na.rm = TRUE), max(dm30[,6], na.rm = TRUE), max(dm30[,7], na.rm = TRUE))
a <- ifelse(is.infinite(a), NA, a)
D$s30_max_avg <- mean(a, na.rm = TRUE)
#the variance
D$s30_variance <- var(dm30[1:336], na.rm = TRUE)
D$s30_var_we <- var(dm30[241:336], na.rm = TRUE)
D$s30_var_wd <- var(dm30[1:240], na.rm = TRUE)
D$r30_var_wd_we <- D$s30_var_wd / D$s30_var_we
# the mean correlation between days
D$s30_cor <- mean(cor(dm30[,1:7], use="pairwise.complete.obs"), na.rm = TRUE)
D$s30_cor_we <- mean(cor(dm30[,6:7], use="pairwise.complete.obs"), na.rm = TRUE)
D$s30_cor_wd <- mean(cor(dm30[,1:5], use="pairwise.complete.obs"), na.rm = TRUE)
#correlation between weekdays and weekend
profile_wd <- apply(dm30[,1:5],1, mean, na.rm = TRUE)
profile_we <- apply(dm30[,6:7],1, mean, na.rm = TRUE)
D$s30_cor_wd_we <- cor(profile_wd, profile_we, use="pairwise.complete.obs")
# small variety
D$s30_sm_variety <- quantile(abs(diff(B)),.2, na.rm=TRUE)
# bigger variety
D$s30_bg_variety <- quantile(abs(diff(B)),.6, na.rm=TRUE)
#smooth max
D$s30_sm_max <- mean(apply(dm30[,1:5], 2, function (V) {
max(
.5 * V[-c(1,48)]
+ .25 *( V[-c(1,2)] + V[-c(47,48)] ), na.rm = TRUE)
}))
# number_zeros
D$s30_number_zeros <- sum(B==0, na.rm = TRUE)
#
#corrected consumptions features based on some statistical features
#
#c_evening
daily=colSums(dm30[37:45,1:5]-D$s30_min, na.rm = TRUE)
D$c30_evening_no_min=mean(daily)
#c_morning
daily=colSums(dm30[13:21,1:5]-D$s30_min, na.rm = TRUE)
D$c30_morning_no_min=mean(daily)
#c_night
daily=colSums(dm30[3:11,1:5]-D$s30_min, na.rm = TRUE)
D$c30_night_no_min=mean(daily)
#c_noon
daily=colSums(dm30[21:29,1:5]-D$s30_min, na.rm = TRUE)
D$c30_noon_no_min=mean(daily)
#corrected relations
D$r30_mean_max_no_min <- min(10, mean(apply(dm30[,1:5],2, function (V)
{m=min(V); (max(V)-m)/(mean(V)-m) }),na.rm=TRUE))
D$r30_evening_noon_no_min <- min(10,mean(apply(dm30[,1:5],2,function (V)
{m=min(V); (sum(V[37:45]-m))/(sum(V[21:29]-m))}),na.rm=TRUE))
D$r30_morning_noon_no_min <- min(10,mean(apply(dm30[,1:5],2,function (V)
{m=min(V); (sum(V[13:21]-m))/(sum(V[21:29]-m))}),na.rm=TRUE))
D$r30_day_night_no_min <- min(10,mean(apply(dm30[,1:5],2, function (V)
{m=min(V); (sum(V[21:29]-m))/(sum(V[3:11]-m))}),na.rm=TRUE))
#
# time relevant features
#
D$t30_above_1kw <- table(dm30>1)["TRUE"]
D$t30_above_2kw <- table(dm30>2)["TRUE"]
D$t30_above_mean <- table(dm30>D$c30_week)["TRUE"]
D$t30_daily_max <- which.max(dm30)
D$t30_daily_min <- which.min(dm30)
#
# time series features
#
# smaller peaks (with plot smothing function stat)
x=lowess(B[1:240],f=.02)$y
D$s30_num_peaks=sum(diff(sign(diff(x)))==2)
# sum of differences to predesessor (absolute value)
D$s30_diff <- mean(stats::lag(ts(dm30[,1:5]),k=1), na.rm = TRUE)
#measure of auto-correlation (above 3 hours time lag) to other days
ts_week <- ts(dm30[1:336], start=1, frequency = 48)
D$ts30_acf_mean3h <- mean(acf(ts_week, lag.max=6, plot=FALSE, na.action = na.pass)$acf)
ts_weekday <- ts(dm30[,1:5], start=1, frequency = 48)
D$ts30_acf_mean3h_weekday <- mean(acf(ts_weekday, lag.max=6, plot=FALSE, na.action = na.pass)$acf)
#seasonal decomposition -> analysis of the remainer (NA-handling not working)
try({
s <- stl(ts_week, t.window=336, s.window=48, na.action = na.omit)
D$ts30_stl_varRem <- var(as.matrix(s$time.series)[,3])
}, silent = TRUE)
if(is.null(D$ts30_stl_varRem)) D$ts30_stl_varRem <- NA
# t_above_base
D$t30_above_base <- mean(apply(dm30[,1:5] ,2, function(V) {sum( V>(min(V)*2+.1))}))
# difference between weekdays, +-30 min
smart_diff <- function(V,W)
{
w=vector(length=3)
w[1]=sum(abs(V[-c(1,48)]-W[-c(1,48)]), na.rm = TRUE)
w[2]=sum(abs(V[-c(47,48)]-W[-c(1,48)]), na.rm = TRUE)
w[3]=sum(abs(V[-c(1,2)]-W[-c(1,48)]), na.rm = TRUE)
return(min(w))
}
D$s30_day_diff <- mean(smart_diff(dm30[,1],dm30[,2]),
smart_diff(dm30[,2],dm30[,3]),
smart_diff(dm30[,3],dm30[,4]),
smart_diff(dm30[,4],dm30[,5]))
#difference between weekdays weak version +- 30 min always
weak_diff <- function(V,W)
{
sum(pmin(abs(V[-c(1,48)]-W[-c(1,48)]),
abs(V[-c(1,48)]-W[-c(47,48)]),
abs(V[-c(1,48)]-W[-c(1,2)]), na.rm = TRUE), na.rm = TRUE)
}
D$s30_day_diff_weak <- mean(weak_diff(dm30[,1],dm30[,2]),
weak_diff(dm30[,2],dm30[,3]),
weak_diff(dm30[,3],dm30[,4]),
weak_diff(dm30[,4],dm30[,5]))
#Peak breite
if(any(is.na(B)))
{
D$t30_wide_peaks <- 0
D$t30_width_peaks <- 0
}
else
{
d_peaks <- 2
# all values that are higher than 1/2 * max
peaks <- B > (.5 * D$s30_max)
# the positions of these values
Non_peaks <- c(which(!peaks), 337)
lv <- 0
N_peaks <- 0
for(i in Non_peaks)
{
temp <- i - lv
if(temp > 2)
{
N_peaks <- N_peaks + 1
d_peaks <- c(d_peaks, temp)
}
lv=i
}
D$t30_wide_peaks <- N_peaks
D$t30_width_peaks <- mean(d_peaks)
}
#time above base / second approach
x=sort(B[1:240])/max(B[1:240])
m=length(x)
temp=(-.5*x[-c(m,m-1)]+.5*x[-c(1,2)])/(2/m)
D$t30_time_above_base2 <- min(which(temp[20:length(temp)]>1),210)
D$t30_percent_above_base <- x[D$t30_time_above_base2+20]
D$t30_value_above_base <- D$t30_percent_above_base*max(B[1:240])
D$t30_const_time <- min(which(diff(sign(diff(lowess(temp,f=.2)$y)))==2),230)
D$t30_value_min_guess <- x[D$t30_const_time]
#First time above base
D$t30_first_above_base <- mean(apply(dm30[10:48,1:5], 2,
function(V) min( which(V>D$t30_value_above_base) ,48)))
# Big peaks
x=lowess(B[1:240],f=.05)$y #Glättungsfunktion f. Arbeitstage mit großer Frequenz
D$s30_num_big_peaks=sum(diff(sign(diff(x)))==2) #Anzahl von Maxima berechnet (Vorzeichenwechsel)
# smaller peaks
x=lowess(B[1:240],f=.02)$y
D$t30_number_small_peaks=sum(diff(sign(diff(x)))==2)
#distances between big values
dist_fun=function(V)
{
five_biggest=order(V,decreasing=TRUE)[1:3]
sum(apply(combn(five_biggest,2),2,function(V) abs(diff(V)) ))
}
D$t30_dist_big_v=mean(apply(dm30[,1:5],2, dist_fun))
#sanitize NA / Inf with default values
if(replace_NA_with_defaults){
#values to be replaced with 0
rep_zero <- c(
"r30_night_wd_we",
"r30_morning_wd_we",
"r30_noon_wd_we",
"r30_afternoon_wd_we",
"r30_evening_wd_we",
"r30_night_day",
"r30_we_night_day",
"r30_wd_night_day",
"r30_morning_noon",
"r30_we_morning_noon",
"r30_wd_morning_noon",
"r30_evening_noon",
"r30_we_evening_noon",
"r30_wd_evening_noon",
"r30_mean_max_no_min",
"r30_evening_noon_no_min",
"r30_morning_noon_no_min",
"r30_day_night_no_min",
"r30_mean_max",
"r30_min_mean",
"r30_max_wd_we",
"r30_var_wd_we",
"s30_cor",
"s30_cor_we",
"s30_cor_wd",
"s30_cor_wd_we",
"t30_value_min_guess",
"ts30_acf_mean3h",
"ts30_acf_mean3h_weekday",
"t30_percent_above_base")
for (feat in rep_zero){
if(is.na(D[[feat]]) | is.infinite(D[[feat]]))
D[[feat]] <- 0
}
#values to be replaced with -1
rep_min1 <- c(
"t30_above_1kw",
"t30_above_2kw",
"t30_above_mean",
"t30_above_base",
"t30_value_above_base"
)
for (feat in rep_min1){
if(is.na(D[[feat]]) | is.infinite(D[[feat]]))
D[[feat]] <- 0
}
}
return(D)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.