Description Usage Arguments Value References Examples
Conjugate Gradient Squared(CGS) method is an extension of Conjugate Gradient method where the system
is symmetric and positive definite. It aims at achieving faster convergence using an idea of
contraction operator twice. For a square matrix A,it is required to be symmetric and positive definite.
For an overdetermined system where nrow(A)>ncol(A)
,
it is automatically transformed to the normal equation. Underdetermined system -
nrow(A)<ncol(A)
- is not supported. Preconditioning matrix M, in theory, should be symmetric and positive definite
with fast computability for inverse, though it is not limited until the solver level.
1 2 |
A |
an (m\times n) dense or sparse matrix. See also |
B |
a vector of length m or an (m\times k) matrix (dense or sparse) for solving k systems simultaneously. |
xinit |
a length-n vector for initial starting point. |
reltol |
tolerance level for stopping iterations. |
maxiter |
maximum number of iterations allowed. |
preconditioner |
an (n\times n) preconditioning matrix; default is an identity matrix. |
adjsym |
a logical; |
verbose |
a logical; |
a named list containing
solution; a vector of length n or a matrix of size (n\times k).
the number of iterations required.
a vector of errors for stopping criterion.
sonneveld_cgs_1989SolveLS
1 2 3 4 5 6 7 8 9 10 |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.