Description Usage Arguments Value References Examples
Quasia-Minimal Resudial(QMR) method is another remedy of the BiCG which shows rather irregular convergence behavior. It adapts to solve the reduced tridiagonal system in a least squares sense and its convergence is known to be quite smoother than BiCG.
1 2 | lsolve.qmr(A, B, xinit = NA, reltol = 1e-05, maxiter = 1000,
preconditioner = diag(ncol(A)), verbose = TRUE)
|
A |
an (m\times n) dense or sparse matrix. See also |
B |
a vector of length m or an (m\times k) matrix (dense or sparse) for solving k systems simultaneously. |
xinit |
a length-n vector for initial starting point. |
reltol |
tolerance level for stopping iterations. |
maxiter |
maximum number of iterations allowed. |
preconditioner |
an (n\times n) preconditioning matrix; default is an identity matrix. |
verbose |
a logical; |
a named list containing
solution; a vector of length n or a matrix of size (n\times k).
the number of iterations required.
a vector of errors for stopping criterion.
freund_qmr:_1991SolveLS
1 2 3 4 5 6 7 8 9 10 11 |
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.