Description Usage Arguments Value References Examples
Chebyshev method - also known as Chebyshev iteration - avoids computation of inner product,
enabling distributed-memory computation to be more efficient at the cost of requiring
a priori knowledge on the range of spectrum for matrix A
.
1 2 |
A |
an (m\times n) dense or sparse matrix. See also |
B |
a vector of length m or an (m\times k) matrix (dense or sparse) for solving k systems simultaneously. |
xinit |
a length-n vector for initial starting point. |
reltol |
tolerance level for stopping iterations. |
maxiter |
maximum number of iterations allowed. |
preconditioner |
an (n\times n) preconditioning matrix; default is an identity matrix. |
adjsym |
a logical; |
verbose |
a logical; |
a named list containing
solution; a vector of length n or a matrix of size (n\times k).
the number of iterations required.
a vector of errors for stopping criterion.
gutknecht_chebyshev_2002SolveLS
1 2 3 4 5 6 7 8 9 10 | ## Overdetermined System
A = matrix(rnorm(10*5),nrow=10)
x = rnorm(5)
b = A%*%x
out1 = lsolve.sor(A,b,w=0.5)
out2 = lsolve.cheby(A,b)
matout = cbind(x, out1$x, out2$x);
colnames(matout) = c("original x","SOR result", "Chebyshev result")
print(matout)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.