inst/worker/worker.R

#
# Licensed to the Apache Software Foundation (ASF) under one or more
# contributor license agreements.  See the NOTICE file distributed with
# this work for additional information regarding copyright ownership.
# The ASF licenses this file to You under the Apache License, Version 2.0
# (the "License"); you may not use this file except in compliance with
# the License.  You may obtain a copy of the License at
#
#    http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#

# Worker class

# Get current system time
currentTimeSecs <- function() {
  as.numeric(Sys.time())
}

# Get elapsed time
elapsedSecs <- function() {
  proc.time()[3]
}

compute <- function(mode, partition, serializer, deserializer, key,
             colNames, computeFunc, inputData) {
  if (mode > 0) {
    if (deserializer == "row") {
      # Transform the list of rows into a data.frame
      # Note that the optional argument stringsAsFactors for rbind is
      # available since R 3.2.4. So we set the global option here.
      oldOpt <- getOption("stringsAsFactors")
      options(stringsAsFactors = FALSE)

      # Handle binary data types
      if ("raw" %in% sapply(inputData[[1]], class)) {
        inputData <- SparkR:::rbindRaws(inputData)
      } else {
        inputData <- do.call(rbind.data.frame, inputData)
      }

      options(stringsAsFactors = oldOpt)

      names(inputData) <- colNames
    } else {
      # Check to see if inputData is a valid data.frame
      stopifnot(deserializer == "byte" || deserializer == "arrow")
      stopifnot(is.data.frame(inputData))
    }

    if (mode == 2) {
      output <- computeFunc(key, inputData)
    } else {
      output <- computeFunc(inputData)
    }
    if (serializer == "row") {
      # Transform the result data.frame back to a list of rows
      output <- split(output, seq(nrow(output)))
    } else {
      # Serialize the output to a byte array
      stopifnot(serializer == "byte" || serializer == "arrow")
    }
  } else {
    output <- computeFunc(partition, inputData)
  }
  return(output)
}

outputResult <- function(serializer, output, outputCon) {
  if (serializer == "byte") {
    SparkR:::writeRawSerialize(outputCon, output)
  } else if (serializer == "row") {
    SparkR:::writeRowSerialize(outputCon, output)
  } else if (serializer == "arrow") {
    SparkR:::writeSerializeInArrow(outputCon, output)
  } else {
    # write lines one-by-one with flag
    lapply(output, function(line) SparkR:::writeString(outputCon, line))
  }
}

# Constants
specialLengths <- list(END_OF_STREAM = 0L, TIMING_DATA = -1L)

# Timing R process boot
bootTime <- currentTimeSecs()
bootElap <- elapsedSecs()

rLibDir <- Sys.getenv("SPARKR_RLIBDIR")
connectionTimeout <- as.integer(Sys.getenv("SPARKR_BACKEND_CONNECTION_TIMEOUT", "6000"))
dirs <- strsplit(rLibDir, ",")[[1]]
# Set libPaths to include SparkR package as loadNamespace needs this
# TODO: Figure out if we can avoid this by not loading any objects that require
# SparkR namespace
.libPaths(c(dirs, .libPaths()))
suppressPackageStartupMessages(library(SparkR))

port <- as.integer(Sys.getenv("SPARKR_WORKER_PORT"))
inputCon <- socketConnection(
    port = port, blocking = TRUE, open = "wb", timeout = connectionTimeout)
SparkR:::doServerAuth(inputCon, Sys.getenv("SPARKR_WORKER_SECRET"))

outputCon <- socketConnection(
    port = port, blocking = TRUE, open = "wb", timeout = connectionTimeout)
SparkR:::doServerAuth(outputCon, Sys.getenv("SPARKR_WORKER_SECRET"))

# read the index of the current partition inside the RDD
partition <- SparkR:::readInt(inputCon)

deserializer <- SparkR:::readString(inputCon)
serializer <- SparkR:::readString(inputCon)

# Include packages as required
packageNames <- unserialize(SparkR:::readRaw(inputCon))
for (pkg in packageNames) {
  suppressPackageStartupMessages(library(as.character(pkg), character.only = TRUE))
}

# read function dependencies
funcLen <- SparkR:::readInt(inputCon)
computeFunc <- unserialize(SparkR:::readRawLen(inputCon, funcLen))
env <- environment(computeFunc)
parent.env(env) <- .GlobalEnv  # Attach under global environment.

# Timing init envs for computing
initElap <- elapsedSecs()

# Read and set broadcast variables
numBroadcastVars <- SparkR:::readInt(inputCon)
if (numBroadcastVars > 0) {
  for (bcast in seq(1:numBroadcastVars)) {
    bcastId <- SparkR:::readInt(inputCon)
    value <- unserialize(SparkR:::readRaw(inputCon))
    SparkR:::setBroadcastValue(bcastId, value)
  }
}

# Timing broadcast
broadcastElap <- elapsedSecs()
# Initial input timing
inputElap <- broadcastElap

# If -1: read as normal RDD; if >= 0, treat as pairwise RDD and treat the int
# as number of partitions to create.
numPartitions <- SparkR:::readInt(inputCon)

# 0 - RDD mode, 1 - dapply mode, 2 - gapply mode
mode <- SparkR:::readInt(inputCon)

if (mode > 0) {
  colNames <- SparkR:::readObject(inputCon)
}

isEmpty <- SparkR:::readInt(inputCon)
computeInputElapsDiff <- 0
outputComputeElapsDiff <- 0

if (isEmpty != 0) {
  if (numPartitions == -1) {
    if (deserializer == "byte") {
      # Now read as many characters as described in funcLen
      data <- SparkR:::readDeserialize(inputCon)
    } else if (deserializer == "string") {
      data <- as.list(readLines(inputCon))
    } else if (deserializer == "row" && mode == 2) {
      dataWithKeys <- SparkR:::readMultipleObjectsWithKeys(inputCon)
      keys <- dataWithKeys$keys
      data <- dataWithKeys$data
    } else if (deserializer == "row") {
      data <- SparkR:::readMultipleObjects(inputCon)
    } else if (deserializer == "arrow" && mode == 2) {
      dataWithKeys <- SparkR:::readDeserializeWithKeysInArrow(inputCon)
      keys <- dataWithKeys$keys
      data <- dataWithKeys$data
    } else if (deserializer == "arrow" && mode == 1) {
      data <- SparkR:::readDeserializeInArrow(inputCon)
      # See https://stat.ethz.ch/pipermail/r-help/2010-September/252046.html
      # rbind.fill might be an alternative to make it faster if plyr is installed.
      # Also, note that, 'dapply' applies a function to each partition.
      data <- do.call("rbind", data)
    }

    # Timing reading input data for execution
    inputElap <- elapsedSecs()
    if (mode > 0) {
      if (mode == 1) {
        output <- compute(mode, partition, serializer, deserializer, NULL,
                    colNames, computeFunc, data)
       } else {
        # gapply mode
        outputs <- list()
        for (i in seq_len(length(data))) {
          # Timing reading input data for execution
          computeStart <- elapsedSecs()
          output <- compute(mode, partition, serializer, deserializer, keys[[i]],
                      colNames, computeFunc, data[[i]])
          computeElap <- elapsedSecs()
          if (serializer == "arrow") {
            outputs[[length(outputs) + 1L]] <- output
          } else {
            outputResult(serializer, output, outputCon)
            outputComputeElapsDiff <- outputComputeElapsDiff + (elapsedSecs() - computeElap)
          }
          computeInputElapsDiff <- computeInputElapsDiff + (computeElap - computeStart)
        }

        if (serializer == "arrow") {
          # See https://stat.ethz.ch/pipermail/r-help/2010-September/252046.html
          # rbind.fill might be an alternative to make it faster if plyr is installed.
          outputStart <- elapsedSecs()
          combined <- do.call("rbind", outputs)
          SparkR:::writeSerializeInArrow(outputCon, combined)
          outputComputeElapsDiff <- elapsedSecs() - outputStart
        }
      }
    } else {
      output <- compute(mode, partition, serializer, deserializer, NULL,
                  colNames, computeFunc, data)
    }
    if (mode != 2) {
      # Not a gapply mode
      computeElap <- elapsedSecs()
      outputResult(serializer, output, outputCon)
      outputElap <- elapsedSecs()
      computeInputElapsDiff <- computeElap - inputElap
      outputComputeElapsDiff <- outputElap - computeElap
    }
  } else {
    if (deserializer == "byte") {
      # Now read as many characters as described in funcLen
      data <- SparkR:::readDeserialize(inputCon)
    } else if (deserializer == "string") {
      data <- readLines(inputCon)
    } else if (deserializer == "row") {
      data <- SparkR:::readMultipleObjects(inputCon)
    }
    # Timing reading input data for execution
    inputElap <- elapsedSecs()

    res <- new.env()

    # Step 1: hash the data to an environment
    hashTupleToEnvir <- function(tuple) {
      # NOTE: execFunction is the hash function here
      hashVal <- computeFunc(tuple[[1]])
      bucket <- as.character(hashVal %% numPartitions)
      acc <- res[[bucket]]
      # Create a new accumulator
      if (is.null(acc)) {
        acc <- SparkR:::initAccumulator()
      }
      SparkR:::addItemToAccumulator(acc, tuple)
      res[[bucket]] <- acc
    }
    invisible(lapply(data, hashTupleToEnvir))
    # Timing computing
    computeElap <- elapsedSecs()

    # Step 2: write out all of the environment as key-value pairs.
    for (name in ls(res)) {
      SparkR:::writeInt(outputCon, 2L)
      SparkR:::writeInt(outputCon, as.integer(name))
      # Truncate the accumulator list to the number of elements we have
      length(res[[name]]$data) <- res[[name]]$counter
      SparkR:::writeRawSerialize(outputCon, res[[name]]$data)
    }
    # Timing output
    outputElap <- elapsedSecs()
    computeInputElapsDiff <- computeElap - inputElap
    outputComputeElapsDiff <- outputElap - computeElap
  }
}

# Report timing
SparkR:::writeInt(outputCon, specialLengths$TIMING_DATA)
SparkR:::writeDouble(outputCon, bootTime)
SparkR:::writeDouble(outputCon, initElap - bootElap)        # init
SparkR:::writeDouble(outputCon, broadcastElap - initElap)   # broadcast
SparkR:::writeDouble(outputCon, inputElap - broadcastElap)  # input
SparkR:::writeDouble(outputCon, computeInputElapsDiff)    # compute
SparkR:::writeDouble(outputCon, outputComputeElapsDiff)   # output

# End of output
SparkR:::writeInt(outputCon, specialLengths$END_OF_STREAM)

close(outputCon)
close(inputCon)

Try the SparkR package in your browser

Any scripts or data that you put into this service are public.

SparkR documentation built on June 3, 2021, 5:05 p.m.