Nothing
#library(testthat)
library(SuperLearner)
if(all(sapply(c("testthat", "MASS"), requireNamespace))){
testthat::context("Wrapper: glm")
data(Boston, package = "MASS")
Y_gaus = Boston$medv
Y_bin = as.numeric(Boston$medv > 23)
# Remove outcome from covariate dataframe.
X = Boston[, -14]
# Convert to a matrix.
X_mat = model.matrix(~ ., data = X)
# Remove intercept.
X_mat = X_mat[, -1]
set.seed(1)
##########
# Try just the wrapper itself, not via SuperLearner
model = SuperLearner::SL.glm(Y_gaus, X, X, family = gaussian(),
obsWeights = rep(1, nrow(X)))
print(model$fit$object)
print(summary(model$fit$object))
model = SuperLearner::SL.glm(Y_bin, X, X, family = binomial(), model = FALSE,
obsWeights = rep(1, nrow(X)))
print(summary(model$fit$object))
# Display element names in the model fit object.
print(names(model$fit$object))
# Confirm that we are conserving memory.
testthat::test_that("Memory usage: fit obj does not contain the model element.", {
testthat::expect(!"model" %in% names(model$fit$object),
"'model' does exist in the fit object, but shouldn't.")
})
# Confirm that not conserving memory also works.
testthat::test_that("Memory usage: fit obj does contain the model element.", {
model = SuperLearner::SL.glm(Y_bin, X, X, family = binomial(),
obsWeights = rep(1, nrow(X)),
model = T)
testthat::expect("model" %in% names(model$fit$object),
"'model' should exist in the fit object.")
})
# Confirm matrix X also works.
model = SuperLearner::SL.glm(Y_gaus, X_mat, X, family = gaussian(), obsWeights = rep(1, nrow(X)))
print(summary(model$fit$object))
model = SuperLearner::SL.glm(Y_bin, X_mat, X, family = binomial(), obsWeights = rep(1, nrow(X)))
print(summary(model$fit$object))
##########
# SuperLearner with the wrapper.
# Gaussian version.
sl = SuperLearner(Y_gaus, X, family = gaussian(),
SL.library = c("SL.mean", "SL.glm"))
print(sl)
pred = predict(sl, X)
print(summary(pred$pred))
# Confirm prediction on matrix version of X.
pred2 = predict(sl, X_mat)
testthat::expect_equal(pred$pred, pred2$pred)
# Binomial version.
sl = SuperLearner(Y_bin, X, family = binomial(),
SL.library = c("SL.mean", "SL.glm"))
print(sl)
pred = predict(sl, X)
# These predictions should be in [0, 1].
print(summary(pred$pred))
# Confirm prediction on matrix version of X
pred2 = predict(sl, X_mat)
testthat::expect_equal(pred$pred, pred2$pred)
####################
# TODO: test different argument customizations.
####################
# TODO: test hyperparameter optimization.
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.