Nothing
test_that("sensitivity_analysis_SurvSurv_copula() works on a single core with Clayton copula", {
# Load fitted copula model.
fitted_model = readRDS(test_path("fixtures", "ovarian-dvine-clayton.rds"))
# Illustration with small number of replications and low precision
set.seed(1)
sens_results = sensitivity_analysis_SurvSurv_copula(
fitted_model,
composite = TRUE,
lower = c(-1, 0, 0, -1),
upper = c(1, 0, 0, 1),
n_sim = 5,
n_prec = 500
)
output_vector = c(sens_results$ICA[1],
sens_results$sp_rho[1])
check_vector = c(0.988990899030, 0.993308293233)
expect_equal(output_vector, check_vector, tolerance = 1)
# We're only checking whether the functions run without errors;
# hence the large tolerance.
})
test_that("sensitivity_analysis_SurvSurv_copula() works with variable number of knots", {
# Load fitted copula model.
fitted_model = readRDS(test_path("fixtures", "ovarian-dvine-variable.rds"))
# Illustration with small number of replications and low precision
set.seed(1)
sens_results = sensitivity_analysis_SurvSurv_copula(
fitted_model,
composite = TRUE,
lower = c(-1, 0, 0, -1),
upper = c(1, 0, 0, 1),
n_sim = 5,
n_prec = 500
)
output_vector = c(sens_results$ICA[1],
sens_results$sp_rho[1])
check_vector = c(0.979074242038, 0.971166764667)
expect_equal(output_vector, check_vector, tolerance = 1)
# We're only checking whether the functions run without errors;
# hence the large tolerance.
})
test_that("sensitivity_analysis_SurvSurv_copula() works on 2 cores with Clayton copula", {
# Do not run this test on CRAN because multiple cores may not be available on
# the CRAN computer.
skip_on_cran()
# Load fitted copula model.
fitted_model = readRDS(test_path("fixtures", "ovarian-dvine-clayton.rds"))
# Illustration with small number of replications and low precision
set.seed(1)
sens_results = sensitivity_analysis_SurvSurv_copula(
fitted_model,
composite = TRUE,
lower = c(-1, 0, 0, -1),
upper = c(1, 0, 0, 1),
n_sim = 5,
n_prec = 500,
ncores = 2
)
output_vector = c(sens_results$ICA[1],
sens_results$sp_rho[1])
check_vector = c(0.988990899030, 0.993308293233)
expect_equal(output_vector, check_vector, tolerance = 1)
# We're only checking whether the functions run without errors;
# hence the large tolerance.
})
test_that("sensitivity_analysis_SurvSurv_copula() works on a single core with variable copula", {
# Load fitted copula model.
fitted_model = readRDS(test_path("fixtures", "ovarian-dvine-variable.rds"))
# Illustration with small number of replications and low precision
set.seed(1)
sens_results = sensitivity_analysis_SurvSurv_copula(
fitted_model,
composite = TRUE,
n_sim = 5,
n_prec = 500
)
output_vector = c(sens_results$ICA[1],
sens_results$sp_rho[1])
check_vector = c(0.973975831732, 0.972747026988)
expect_equal(output_vector, check_vector, tolerance = 1)
# We're only checking whether the functions run without errors;
# hence the large tolerance.
})
test_that("sensitivity_analysis_SurvSurv_copula() works on a single core with Clayton copula and four different unidentifiable copulas", {
# Load fitted copula model.
fitted_model = readRDS(test_path("fixtures", "ovarian-dvine-clayton.rds"))
# Illustration with small number of replications and low precision
set.seed(1)
sens_results = sensitivity_analysis_SurvSurv_copula(
fitted_model,
composite = TRUE,
n_sim = 1,
n_prec = 2e3,
copula_family2 = c("clayton", "frank", "gaussian", "frank")
)
set.seed(1)
sens_results_cond1 = sensitivity_analysis_SurvSurv_copula(
fitted_model,
composite = TRUE,
lower = c(-1, 0, 0, -1),
upper = c(1, 0, 0, 1),
n_sim = 1,
n_prec = 2e3,
copula_family2 = c("clayton", "frank", "gaussian", "frank")
)
set.seed(1)
sens_results_cond2 = sensitivity_analysis_SurvSurv_copula(
fitted_model,
composite = TRUE,
lower = c(-1, 0, 0, -1),
upper = c(1, 0, 0, 1),
n_sim = 1,
n_prec = 2e3,
copula_family2 = c("clayton", "frank", "frank", "frank")
)
# Check results for setting without conditional independence.
expect_equal(
c(sens_results$ICA[1],
sens_results$sp_rho[1]),
c(0.996814266963, 0.995511262378),
tolerance = 1
)
# We're only checking whether the functions run without errors;
# hence the large tolerance.
# Check that results for two conditional independence settings are identical.
# The only difference is in the copula for which we assume conditional
# independence.
expect_equal(
sens_results_cond1,
sens_results_cond2, ignore_attr = "copula_family2"
)
})
test_that("sensitivity_analysis_SurvSurv_copula() wth restricted survival times and Spearman's rho as ICA", {
# Load fitted copula model.
fitted_model = readRDS(test_path("fixtures", "ovarian-dvine-clayton.rds"))
# Illustration with small number of replications and low precision
set.seed(1)
sens_results = sensitivity_analysis_SurvSurv_copula(
fitted_model,
lower = rep(0.5, 4),
composite = TRUE,
n_sim = 1,
n_prec = 2e3,
mutinfo_estimator = function(x, y) 1 - exp(-2 * stats::cor(x, y, method = "spearman")),
restr_time = 2
)
output_vector = c(sens_results$ICA[1],
sens_results$sp_rho[1])
check_vector = c(0.822136179803, 0.995515244445)
expect_equal(output_vector, check_vector, tolerance = 1)
# We're only checking whether the functions run without errors;
# hence the large tolerance.
})
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.