Description Usage Arguments Value References Examples
View source: R/subspace_SSQP.R
Subspace Segmentation via Quadratic Programming (SSQP) solves the following problem
\textrm{min}_Z \|X-XZ\|_F^2 + λ \|Z^\top Z\|_1 \textrm{ such that }diag(Z)=0,~Z≤q 0
where X\in\mathbf{R}^{p\times n} is a column-stacked data matrix. The computed Z^* is used as an affinity matrix for spectral clustering.
1 |
data |
an (n\times p) matrix of row-stacked observations. |
k |
the number of clusters (default: 2). |
lambda |
regularization parameter (default: 1e-5). |
... |
extra parameters for the gradient descent algorithm including
|
a named list of S3 class T4cluster
containing
a length-n vector of class labels (from 1:k).
name of the algorithm.
wang_efficient_2011T4cluster
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 | ## generate a toy example
set.seed(10)
tester = genLP(n=100, nl=2, np=1, iso.var=0.1)
data = tester$data
label = tester$class
## do PCA for data reduction
proj = base::eigen(stats::cov(data))$vectors[,1:2]
dat2 = data%*%proj
## run SSQP for k=3 with different lambda values
out1 = SSQP(data, k=3, lambda=1e-2)
out2 = SSQP(data, k=3, lambda=1)
out3 = SSQP(data, k=3, lambda=1e+2)
## extract label information
lab1 = out1$cluster
lab2 = out2$cluster
lab3 = out3$cluster
## visualize
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,3))
plot(dat2, pch=19, cex=0.9, col=lab1, main="SSQP:lambda=1e-2")
plot(dat2, pch=19, cex=0.9, col=lab2, main="SSQP:lambda=1")
plot(dat2, pch=19, cex=0.9, col=lab3, main="SSQP:lambda=1e+2")
par(opar)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.