View source: R/algorithm_scNJW.R
| scNJW | R Documentation |
The version of Ng, Jordan, and Weiss first constructs the affinity matrix
A_{ij} = \exp(-d(x_i, d_j)^2 / \sigma^2)
where \sigma is a common bandwidth parameter and performs k-means (or possibly, GMM) clustering on
the row-space of eigenvectors for the symmetric graph laplacian matrix
L=D^{-1/2}(D-A)D^{-1/2}
.
scNJW(data, k = 2, sigma = 1, ...)
data |
an |
k |
the number of clusters (default: 2). |
sigma |
bandwidth parameter (default: 1). |
... |
extra parameters including
|
a named list of S3 class T4cluster containing
a length-n vector of class labels (from 1:k).
eigenvalues of the graph laplacian's spectral decomposition.
an (n\times k) low-dimensional embedding.
name of the algorithm.
ng_spectral_2002T4cluster
# -------------------------------------------------------------
# clustering with 'iris' dataset
# -------------------------------------------------------------
## PREPARE
data(iris)
X = as.matrix(iris[,1:4])
lab = as.integer(as.factor(iris[,5]))
## EMBEDDING WITH PCA
X2d = Rdimtools::do.pca(X, ndim=2)$Y
## CLUSTERING WITH DIFFERENT K VALUES
cl2 = scNJW(X, k=2)$cluster
cl3 = scNJW(X, k=3)$cluster
cl4 = scNJW(X, k=4)$cluster
## VISUALIZATION
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,4), pty="s")
plot(X2d, col=lab, pch=19, main="true label")
plot(X2d, col=cl2, pch=19, main="scNJW: k=2")
plot(X2d, col=cl3, pch=19, main="scNJW: k=3")
plot(X2d, col=cl4, pch=19, main="scNJW: k=4")
par(opar)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.