View source: R/algorithm_kmeanspp.R
| kmeanspp | R Documentation |
K-means++ algorithm is usually used as a fast initialization scheme, though
it can still be used as a standalone clustering algorithms by first choosing the
centroids and assign points to the nearest centroids.
kmeanspp(data, k = 2)
data |
an |
k |
the number of clusters (default: 2). |
a named list of S3 class T4cluster containing
a length-n vector of class labels (from 1:k).
name of the algorithm.
arthur_k-means++:_2007T4cluster
# -------------------------------------------------------------
# clustering with 'iris' dataset
# -------------------------------------------------------------
## PREPARE
data(iris)
X = as.matrix(iris[,1:4])
lab = as.integer(as.factor(iris[,5]))
## EMBEDDING WITH PCA
X2d = Rdimtools::do.pca(X, ndim=2)$Y
## CLUSTERING WITH DIFFERENT K VALUES
cl2 = kmeanspp(X, k=2)$cluster
cl3 = kmeanspp(X, k=3)$cluster
cl4 = kmeanspp(X, k=4)$cluster
## VISUALIZATION
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,4), pty="s")
plot(X2d, col=lab, pch=19, main="true label")
plot(X2d, col=cl2, pch=19, main="k-means++: k=2")
plot(X2d, col=cl3, pch=19, main="k-means++: k=3")
plot(X2d, col=cl4, pch=19, main="k-means++: k=4")
par(opar)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.