View source: R/algorithm_gmm16G.R
| gmm16G | R Documentation |
When each observation x_i is associated with a weight w_i > 0,
modifying the GMM formulation is required. Gebru et al. (2016) proposed a method
to use scaled covariance based on an observation that
\mathcal{N}\left(x\vert \mu, \Sigma\right)^w \propto \mathcal{N}\left(x\vert \mu, \frac{\Sigma}{w}\right)
by considering the positive weight as a role of precision. Currently, we provide a method with fixed weight case only while the paper also considers a Bayesian formalism on the weight using Gamma distribution.
gmm16G(data, k = 2, weight = NULL, ...)
data |
an |
k |
the number of clusters (default: 2). |
weight |
a positive weight vector of length |
... |
extra parameters including
|
a named list of S3 class T4cluster containing
a length-n vector of class labels (from 1:k).
a (k\times p) matrix where each row is a class mean.
a (p\times p\times k) array where each slice is a class covariance.
a length-k vector of class weights that sum to 1.
log-likelihood of the data for the fitted model.
name of the algorithm.
gebru_em_2016T4cluster
# -------------------------------------------------------------
# clustering with 'iris' dataset
# -------------------------------------------------------------
## PREPARE
data(iris)
X = as.matrix(iris[,1:4])
lab = as.integer(as.factor(iris[,5]))
## EMBEDDING WITH PCA
X2d = Rdimtools::do.pca(X, ndim=2)$Y
## CLUSTERING WITH DIFFERENT K VALUES
cl2 = gmm16G(X, k=2)$cluster
cl3 = gmm16G(X, k=3)$cluster
cl4 = gmm16G(X, k=4)$cluster
## VISUALIZATION
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,4), pty="s")
plot(X2d, col=lab, pch=19, main="true label")
plot(X2d, col=cl2, pch=19, main="gmm16G: k=2")
plot(X2d, col=cl3, pch=19, main="gmm16G: k=3")
plot(X2d, col=cl4, pch=19, main="gmm16G: k=4")
par(opar)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.