Description Usage Arguments Value References Examples
View source: R/algorithm_kmeans.R
K-means algorithm we provide is a wrapper to the Armadillo's k-means routine. Two types of initialization schemes are employed. Please see the parameters section for more details.
1 |
data |
an (n\times p) matrix of row-stacked observations. |
k |
the number of clusters (default: 2). |
... |
extra parameters including
|
a named list of S3 class T4cluster
containing
a length-n vector of class labels (from 1:k).
a (k\times p) matrix where each row is a class mean.
within-cluster sum of squares (WCSS).
name of the algorithm.
sanderson_armadillo:_2016T4cluster
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 | # -------------------------------------------------------------
# clustering with 'iris' dataset
# -------------------------------------------------------------
## PREPARE
data(iris)
X = as.matrix(iris[,1:4])
lab = as.integer(as.factor(iris[,5]))
## EMBEDDING WITH PCA
X2d = Rdimtools::do.pca(X, ndim=2)$Y
## CLUSTERING WITH DIFFERENT K VALUES
cl2 = kmeans(X, k=2)$cluster
cl3 = kmeans(X, k=3)$cluster
cl4 = kmeans(X, k=4)$cluster
## VISUALIZATION
opar <- par(no.readonly=TRUE)
par(mfrow=c(1,4), pty="s")
plot(X2d, col=lab, pch=19, main="true label")
plot(X2d, col=cl2, pch=19, main="k-means: k=2")
plot(X2d, col=cl3, pch=19, main="k-means: k=3")
plot(X2d, col=cl4, pch=19, main="k-means: k=4")
par(opar)
|
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.