View source: R/IRT.linearCFA.R
| IRT.linearCFA | R Documentation | 
This function approximates a fitted item response model by a linear
confirmatory factor analysis. I.e., given item response functions, the
expectation E(X_i | \theta_1, \ldots, \theta_D) is
linearly approximated by a_{i1} \theta _1 + \ldots + a_{iD} \theta_D.
See Vermunt and Magidson (2005) for details.
IRT.linearCFA( object, group=1)
## S3 method for class 'IRT.linearCFA'
summary(object,  ...)
object | 
 Fitted item response model for which the   | 
group | 
 Group identifier which defines the selected group.  | 
... | 
 Further arguments to be passed.  | 
A list with following entries
loadings | 
 Data frame with factor loadings.   | 
stand.loadings | 
 Data frame with standardized factor loadings.  | 
M.trait | 
 Mean of factors  | 
SD.trait | 
 Standard deviations of factors  | 
Vermunt, J. K., & Magidson, J. (2005). Factor Analysis with categorical indicators: A comparison between traditional and latent class approaches. In A. Van der Ark, M.A. Croon & K. Sijtsma (Eds.), New Developments in Categorical Data Analysis for the Social and Behavioral Sciences (pp. 41-62). Mahwah: Erlbaum
See tam.fa for confirmatory factor analysis in TAM.
## Not run: 
library(lavaan)
#############################################################################
# EXAMPLE 1: Two-dimensional confirmatory factor analysis data.Students
#############################################################################
data(data.Students, package="CDM")
# select variables
vars <- scan(nlines=1, what="character")
    sc1 sc2 sc3 sc4 mj1 mj2 mj3 mj4
dat <- data.Students[, vars]
# define Q-matrix
Q <- matrix( 0, nrow=8, ncol=2 )
Q[1:4,1] <- Q[5:8,2] <- 1
#*** Model 1: Two-dimensional 2PL model
mod1 <- TAM::tam.mml.2pl( dat, Q=Q, control=list( nodes=seq(-4,4,len=12) ) )
summary(mod1)
# linear approximation CFA
cfa1 <- TAM::IRT.linearCFA(mod1)
summary(cfa1)
# linear CFA in lavaan package
lavmodel <- "
    sc=~ sc1+sc2+sc3+sc4
    mj=~ mj1+mj2+mj3+mj4
    sc1 ~ 1
    sc ~~ mj
    "
mod1b <- lavaan::sem( lavmodel, data=dat, missing="fiml", std.lv=TRUE)
summary(mod1b, standardized=TRUE, fit.measures=TRUE )
#############################################################################
# EXAMPLE 2: Unidimensional confirmatory factor analysis data.Students
#############################################################################
data(data.Students, package="CDM")
# select variables
vars <- scan(nlines=1, what="character")
    sc1 sc2 sc3 sc4
dat <- data.Students[, vars]
#*** Model 1: 2PL model
mod1 <- TAM::tam.mml.2pl( dat )
summary(mod1)
# linear approximation CFA
cfa1 <- TAM::IRT.linearCFA(mod1)
summary(cfa1)
# linear CFA
lavmodel <- "
    sc=~ sc1+sc2+sc3+sc4
    "
mod1b <- lavaan::sem( lavmodel, data=dat, missing="fiml", std.lv=TRUE)
summary(mod1b, standardized=TRUE, fit.measures=TRUE )
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.