View source: R/IRT.linearCFA.R
IRT.linearCFA | R Documentation |
This function approximates a fitted item response model by a linear
confirmatory factor analysis. I.e., given item response functions, the
expectation E(X_i | \theta_1, \ldots, \theta_D)
is
linearly approximated by a_{i1} \theta _1 + \ldots + a_{iD} \theta_D
.
See Vermunt and Magidson (2005) for details.
IRT.linearCFA( object, group=1)
## S3 method for class 'IRT.linearCFA'
summary(object, ...)
object |
Fitted item response model for which the |
group |
Group identifier which defines the selected group. |
... |
Further arguments to be passed. |
A list with following entries
loadings |
Data frame with factor loadings. |
stand.loadings |
Data frame with standardized factor loadings. |
M.trait |
Mean of factors |
SD.trait |
Standard deviations of factors |
Vermunt, J. K., & Magidson, J. (2005). Factor Analysis with categorical indicators: A comparison between traditional and latent class approaches. In A. Van der Ark, M.A. Croon & K. Sijtsma (Eds.), New Developments in Categorical Data Analysis for the Social and Behavioral Sciences (pp. 41-62). Mahwah: Erlbaum
See tam.fa
for confirmatory factor analysis in TAM.
## Not run:
library(lavaan)
#############################################################################
# EXAMPLE 1: Two-dimensional confirmatory factor analysis data.Students
#############################################################################
data(data.Students, package="CDM")
# select variables
vars <- scan(nlines=1, what="character")
sc1 sc2 sc3 sc4 mj1 mj2 mj3 mj4
dat <- data.Students[, vars]
# define Q-matrix
Q <- matrix( 0, nrow=8, ncol=2 )
Q[1:4,1] <- Q[5:8,2] <- 1
#*** Model 1: Two-dimensional 2PL model
mod1 <- TAM::tam.mml.2pl( dat, Q=Q, control=list( nodes=seq(-4,4,len=12) ) )
summary(mod1)
# linear approximation CFA
cfa1 <- TAM::IRT.linearCFA(mod1)
summary(cfa1)
# linear CFA in lavaan package
lavmodel <- "
sc=~ sc1+sc2+sc3+sc4
mj=~ mj1+mj2+mj3+mj4
sc1 ~ 1
sc ~~ mj
"
mod1b <- lavaan::sem( lavmodel, data=dat, missing="fiml", std.lv=TRUE)
summary(mod1b, standardized=TRUE, fit.measures=TRUE )
#############################################################################
# EXAMPLE 2: Unidimensional confirmatory factor analysis data.Students
#############################################################################
data(data.Students, package="CDM")
# select variables
vars <- scan(nlines=1, what="character")
sc1 sc2 sc3 sc4
dat <- data.Students[, vars]
#*** Model 1: 2PL model
mod1 <- TAM::tam.mml.2pl( dat )
summary(mod1)
# linear approximation CFA
cfa1 <- TAM::IRT.linearCFA(mod1)
summary(cfa1)
# linear CFA
lavmodel <- "
sc=~ sc1+sc2+sc3+sc4
"
mod1b <- lavaan::sem( lavmodel, data=dat, missing="fiml", std.lv=TRUE)
summary(mod1b, standardized=TRUE, fit.measures=TRUE )
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.