R/ts_seasonal.R

Defines functions ts_quantile ts_ma ts_surface ts_heatmap ts_polar ts_seasonal

Documented in ts_heatmap ts_ma ts_polar ts_quantile ts_seasonal ts_surface

#'  Seasonality Visualization of Time Series Object
#' @export ts_seasonal
#' @param ts.obj Input object, either a univariate time series object of a class "ts", "zoo", "xts", or a data frame object of a class
#' "data.frame", "tbl", "data.table" as long as there is at least one "Date"/"POSIXt" and a "numeric" objects 
#' (if there are more then one, by defualt will use the first of each). 
#' Currently support only daily, weekly, monthly, and quarterly frequencies 
#' @param type The type of the seasonal plot - 
#' "normal" to split the series by full cycle units, or
#' "cycle" to split by cycle units (applicable only for monthly and quarterly data), or
#' "box" for box-plot by cycle units, or
#' "all" for all the three plots together
#' @param title Plot title - Character object
#' @param Ygrid Logic,show the Y axis grid if set to TRUE (default)
#' @param Xgrid Logic,show the X axis grid if set to TRUE (defualt)
#' @param last Subset the data to the last number of observations
#' @param palette A character, the color palette to be used when the "cycle" or "box" plot are being selected 
#' (by setting the type to "cycle", "box", or "all"). 
#' All the palettes in the RColorBrewer and viridis packages are available to be use, the
#' default option is "Set1" from the RColorBrewer package
#' @param palette_normal A character, the color palette to be used when the "normal" plot is being selected 
#' (by setting the type to "normal" or "all"). 
#' All the palettes in the RColorBrewer and viridis packages are available to be used, the
#' default palette is "viridis" from the RColorBrewer package
#' @description Visualize time series object by it periodicity, currently support time series with daily, monthly and quarterly frequency
#' @examples
#' data(USgas)
#' ts_seasonal(USgas)
#' 
#' # Seasonal box plot
#' ts_seasonal(USgas, type = "box") 
#' 
#' # Plot all the types 
#' ts_seasonal(USgas, type = "all")


# The ts_seasonal function ####

ts_seasonal <- function(ts.obj, 
                        type = "normal", 
                        title = NULL,
                        Ygrid = TRUE, 
                        Xgrid = TRUE, 
                        last = NULL,
                        palette = "Set1",
                        palette_normal = "viridis") {
  
  `%>%` <- magrittr::`%>%`
  
  hex_to_rgb <- function(hex){
    rgb <- base::paste0(as.numeric(grDevices::col2rgb(hex) %>% base::t()), collapse = ",")
    return(rgb)
  }
  
  
  df <- freq <- obj.name <- brewer_palettes <- viridis_palettes <- palette_type <- NULL
  n_colors <- color_list_normal <- main <- NULL
  diff_mean <- col_class <- date_col <-  numeric_col <- NULL
  obj.name <- base::deparse(base::substitute(ts.obj))
  
  
  
  # Set the plot title
  if(base::is.null(title)){
    title <- paste("Seasonality Plot -", obj.name, sep = " ")
  } else if(!base::is.character(title)){
    warning("The 'title' object is not character object, using the default option")
    title <- paste("Seasonality Plot -", obj.name, sep = " ")
  }
  
  
  # Error handling
  # Checking the last parameter
  if(!base::is.null(last)){
    if(!base::is.numeric(last) | last <= 0){
      stop("The 'last' parameter is not valid")
    } else {
      if(last != base::round(last)){
        stop("The 'last' parameter is not integer")
      }
    }
  }
  
  # Checking the type parameter
  if(type != "normal" && type != "cycle" && 
     type != "box" && type != "all" ){
    type <- "normal"
    warning("The 'type' parameter is invalide,", 
            "using the default option - 'normal'")
  }
  
  # Checking the Ygrid and Xgrid parameters
  if(!base::is.logical(Ygrid)){
    Ygrid <- TRUE
    warning("The 'Ygrid' argument is not a boolean operator, setting it to TRUE")
  }
  
  if(!base::is.logical(Xgrid)){
    Xgrid <- TRUE
    warning("The 'Xgrid' argument is not a boolean operator, setting it to TRUE")
  }
  
  # Stage 1 transforming the time series object to data frame
  # Input ts object
  if(stats::is.ts(ts.obj)){
    if(stats::is.mts(ts.obj)){
      ts.obj <- ts.obj[,1]
      warning("The input object is a 'mts' class, by defualt will use only the first series as an input")
    }
    
    freq <- stats::frequency(ts.obj)
    
    if(base::length(ts.obj) < freq){
      stop("The length of the series is smaller than the length of full cycle")
    }
    
    start_main <- stats::start(ts.obj)[1]
    start_minor <- stats::start(ts.obj)[2]
    
    if(freq %in% c(7, 52, 365, 12, 4)){
      minor1 <- base::seq(from = start_minor, to = freq, by = 1)
      minor2 <- base::rep(x = 1:freq, length.out = base::length(ts.obj) - base::length(minor1))
      main1 <- base::rep(x = start_main, length.out = base::length(minor1))
      main2 <- base::rep(x = (start_main + 1):stats::end(ts.obj)[1], 
                         each = freq, 
                         len = base::length(ts.obj) - base::length(minor1))
      df <- base::data.frame(main = c(main1, main2), 
                       minor = c(minor1, minor2), 
                       y = base::as.numeric(ts.obj))
      
      if(freq == 12){
        df$minor <-  base::factor(base::month.abb[df$minor], levels = month.abb)
      }
    } 
    # Input xts or zoo objects
  } else if(xts::is.xts(ts.obj) | zoo::is.zoo(ts.obj)){
    if(!base::is.null(base::ncol(ts.obj))){
      if(base::ncol(ts.obj) > 1){
        ts.obj <- ts.obj[,1]
        warning("The input object is a multiple time series object, by defualt will use only the first series as an input")
      }
    }
    if(lubridate::is.Date(zoo::index(ts.obj))){
      if(xts::periodicity(ts.obj)$scale == "daily"){
        df <- base::data.frame(main = lubridate::year(zoo::index(ts.obj)), 
                         minor = lubridate::yday(zoo::index(ts.obj)), 
                         y = base::as.numeric(ts.obj[,1]))
      } else if(xts::periodicity(ts.obj)$scale == "weekly"){
        df <- base::data.frame(main = lubridate::year(zoo::index(ts.obj)), 
                         minor = lubridate::week(zoo::index(ts.obj)), 
                         y = base::as.numeric(ts.obj[,1]))
      } else if(xts::periodicity(ts.obj)$scale == "monthly"){
        df <- base::data.frame(main = lubridate::year(zoo::index(ts.obj)), 
                         minor = lubridate::month(zoo::index(ts.obj), label = TRUE), 
                         y = base::as.numeric(ts.obj[,1]))
      } else if(xts::periodicity(ts.obj)$scale == "quarterly"){
        df <- base::data.frame(main = lubridate::year(zoo::index(ts.obj)), 
                         minor = lubridate::quarter(zoo::index(ts.obj)), 
                         y = base::as.numeric(ts.obj[,1]))
      } 
    } else if(inherits(zoo::index(ts.obj), "yearqtr") & xts::periodicity(ts.obj)$scale == "quarterly"){
      df <- base::data.frame(main = lubridate::year(zoo::index(ts.obj)), 
                       minor = lubridate::quarter(zoo::index(ts.obj)), 
                       y = base::as.numeric(ts.obj[,1]))
    } else if(inherits(zoo::index(ts.obj), "yearmon") & xts::periodicity(ts.obj)$scale == "monthly"){
      df <- base::data.frame(main = lubridate::year(zoo::index(ts.obj)), 
                       minor = lubridate::quarter(zoo::index(ts.obj)), 
                       y = base::as.numeric(ts.obj[,1]))
    }
    # Input data.frame or tbl or data.table objects
  } else if(base::is.data.frame(ts.obj) | 
            dplyr::is.tbl(ts.obj) | 
            data.table::is.data.table(ts.obj)){ # Case 3 the object is a data frame 
    # Identify the columns classes
    
    ts.obj <- base::as.data.frame(ts.obj)
    col_class <- base::lapply(ts.obj, class)
    col_date <- base::lapply(ts.obj, lubridate::is.Date)
    col_POSIXt <- base::lapply(ts.obj, lubridate::is.POSIXt)
    
    # Check if Date object exist
    if(base::any(col_date == TRUE) & base::any(col_POSIXt == TRUE)){
      d <- t <- NULL
      d <- base::min(base::which(col_date == TRUE))
      t <- base::min(base::which(col_POSIXt == TRUE))
      if(d > t){
        warning("The data frame contains multiple date or time objects,",
                "using the first one as the plot index")
        date_col <- t
      } else {
        warning("The data frame contains multiple date or time objects,",
                "using the first one as the plot index")
        date_col <- d
      }
    } else if(base::any(col_date == TRUE) | base::any(col_POSIXt == TRUE)){
      if(base::any(col_date == TRUE)){
        if(base::length(base::which(col_date == TRUE)) > 1){
          date_col <-  base::min(base::which(col_date == TRUE))
          warning("There are multipe 'date' objects in the data frame,",
                  "using the first one object as the plot index")
        } else {
          date_col <-  base::min(base::which(col_date == TRUE))
        }
      } else if(base::any(col_POSIXt == TRUE)){
        if(base::length(base::which(col_POSIXt == TRUE)) > 1){
          date_col <-  base::min(base::which(col_POSIXt == TRUE))
          warning("There are multipe 'POSIXt' objects in the data frame,",
                  "using the first one as the plot index")
        } else {
          date_col <-  base::min(base::which(col_POSIXt == TRUE))
        }
      } 
    }else {
      stop("No 'Date' or 'POSIXt' object available in the data frame,", 
           "please check if the data format defined properly")
    }
    
    
    # Identify the numeric/integer objects in the data frame  
    numeric_col <- base::which(col_class == "numeric" | col_class == "integer")
    # Stop if there is no any numeric values in the data frame, otherwise build the data frame 
    if(base::length(numeric_col) == 0){
      stop("None of the data frame columns is numeric,", 
           "please check if the data format is defined properly")
    }
    
    # Check if the object has multiple time series
    df_temp <- NULL
    if(length(numeric_col) == 1){
      df_temp <- base::data.frame(date = ts.obj[, date_col], y =  ts.obj[, numeric_col])
    } else {
      warning("The input object is a multiple time series object, by defualt will use only the first series as an input")
      df_temp <- base::data.frame(date = ts.obj[, date_col], ts.obj[, numeric_col[1]])
    }
    
    df_temp <- df_temp %>% dplyr::arrange(date)
    
    data_diff <- NULL
    date_diff <- base::diff(as.numeric(df_temp$date))
    
    if(base::min(date_diff) == base::max(date_diff) & base::mean(date_diff) == 1){
      # Daily
      df <- base::data.frame(main = lubridate::year(df_temp$date),
                       minor = lubridate::yday(df_temp$date),
                       y = df_temp$y)
    } else if(base::min(date_diff) == base::max(date_diff) & base::mean(date_diff) == 7){
      # Weekly
      df <- base::data.frame(main = lubridate::year(df_temp$date),
                       minor = lubridate::week(df_temp$date),
                       y = df_temp$y)
    } else if(base::min(date_diff) >= 28 &  base::max(date_diff) <= 31 & 
              base::mean(date_diff) < 31 & base::mean(date_diff) > 28){
      # Monthly
      df <- base::data.frame(main = lubridate::year(df_temp$date),
                       minor = lubridate::month(df_temp$date, label = TRUE),
                       y = df_temp$y)
    } else if(base::min(date_diff) >= 90 &  base::max(date_diff) <= 92 & 
              base::mean(date_diff) < 92 & base::mean(date_diff) > 90){
      # Quarterly
      df <- base::data.frame(main = lubridate::year(df_temp$date),
                       minor = lubridate::quarter(df_temp$date),
                       y = df_temp$y)
      
    } else{
      stop("The frequency of the input dataset is not valid, must be on of the following - daily, weekly, monthly or quarterly")
    }
  }
  
  if(!base::is.null(last)){
    df <- df[(base::nrow(df) - last + 1):base::nrow(df),]
  }
  
  # Checking colors setting
  brewer_palettes <- row.names(RColorBrewer::brewer.pal.info)
  viridis_palettes <- c("viridis", "magma", "plasma", "inferno", "cividis")
  
  if(type %in% c("cycle", "box", "all")){
    if(palette %in% brewer_palettes){
      n_colors <- NULL
      n_colors <- RColorBrewer::brewer.pal.info$maxcolors[row.names(RColorBrewer::brewer.pal.info)  == palette]
      colors_list <- grDevices::colorRampPalette(RColorBrewer::brewer.pal(n_colors, palette))(base::length(base::unique(df$minor)))
    } else if (palette %in% viridis_palettes){
      colors_list <- viridis::viridis_pal(option = base::eval(palette))(base::length(base::unique(df$minor)))  
    } else {
      warning("The value of the 'palette' argument is invalid, using the default option 'Set1'")
      palette <- "Set1"
      n_colors <- NULL
      n_colors <- RColorBrewer::brewer.pal.info$maxcolors[row.names(RColorBrewer::brewer.pal.info)  == palette]
      colors_list <- grDevices::colorRampPalette(RColorBrewer::brewer.pal(n_colors, palette))(base::length(base::unique(df$minor)))
    }
  }
  
  if(type %in% c("normal", "all")){
    if(palette_normal %in% brewer_palettes){
      n_colros <- NULL
      n_colors <- RColorBrewer::brewer.pal.info$maxcolors[row.names(RColorBrewer::brewer.pal.info)  == palette_normal]
      colors_list_normal <- grDevices::colorRampPalette(RColorBrewer::brewer.pal(n_colors, palette_normal))(base::max(df$main) - base::min(df$main) + 1)
    } else if (palette_normal %in% viridis_palettes){
      colors_list_normal <- viridis::viridis_pal(option = base::eval(palette_normal))(base::max(df$main) - base::min(df$main) + 1)
    } else {
      warning("The value of the 'palette_normal' argument is in valid, using the default option 'Spectral'")
      palette_normal <- "Spectral"
      n_colors <- RColorBrewer::brewer.pal.info$maxcolors[row.names(RColorBrewer::brewer.pal.info)  == palette_normal]
      colors_list_normal <- grDevices::colorRampPalette(RColorBrewer::brewer.pal(n_colors, palette_normal))(base::max(df$main) - base::min(df$main) + 1)
    }
  }  
  
  if(type == "normal" | type == "all"){
    p_normal <- plotly::plot_ly()
    for(i in base::min(df$main):base::max(df$main)){
      temp <- NULL
      temp <- df %>% dplyr::filter(main == i)
      
      p_normal <- p_normal %>%
        plotly::add_lines(x = temp$minor, y = temp$y, name = i, line = list(color = colors_list_normal[i + 1 - base::min(df$main)]))
    }
    p_normal <- p_normal %>% plotly::layout(yaxis = list(title = "By Frequency Cycle"))
  }
  
  if(type == "cycle" | type == "all"){
    df_t <- NULL
    df_t <- base::suppressMessages(df %>% reshape2::dcast(main ~ minor))
    
    showlegend <- legendgroup <- NULL
    showlegend <- TRUE
    
    
    
    p_cycle <- plotly::plot_ly()
    for(i in 2:ncol(df_t)){
      legendgroup <- ifelse(type == "all", 
                            base::paste("all", colnames(df_t)[i], sep = "_"),  
                            base::paste("cycle", colnames(df_t)[i], sep = "_"))
      p_cycle <- p_cycle %>% 
        plotly::add_lines(x = df_t[, 1], y = df_t[, i], 
                          name = colnames(df_t)[i], 
                          line = list(color = colors_list[i - 1]), 
                          showlegend = showlegend,
                          legendgroup = legendgroup)
    }
    
    p_cycle <- p_cycle %>% plotly::layout(yaxis = list(title = "By Frequency Unit"))
  }
  
  if(type == "box" | type == "all"){
    minor <- base::levels(df$minor)
    showlegend <- legendgroup <- NULL
    showlegend <- ifelse(type == "all", FALSE, TRUE)
    
    p_box <- plotly::plot_ly()
    c <- NULL
    c <- 1
    for(i in minor){
      legendgroup <- ifelse(type == "all", 
                            base::paste("all", i, sep = "_"),  
                            base::paste("box", i, sep = "_"))
      p_box <- p_box %>% plotly::add_trace(data = df %>% dplyr::filter(minor == i), y = ~ y,  type = "box",
                                           fillcolor = base::paste("rgba(", hex_to_rgb(colors_list[c]), ", 0.5)", sep = ""),
                                           line = list(color = colors_list[c]),
                                           marker = list(color = colors_list[c]),
                                           boxpoints = "all",
                                           jitter = 0.3,
                                           pointpos = -1.8, 
                                           name = i,
                                           showlegend = showlegend,
                                           legendgroup = legendgroup)
      c <- c + 1
    }
    p_box <- p_box %>% plotly::layout(yaxis = list(title = "By Frequency Unit"))
  }
  
  if(type == "all"){
    p <- plotly::subplot(p_normal, p_cycle, p_box, nrows = 3, titleY = TRUE)
  } else if(type == "normal"){
    p <- p_normal
  } else if(type == "cycle"){
    p <- p_cycle
  } else if(type == "box"){
    p <- p_box
  }
  
  p <- p %>% plotly::layout(title = title)
  
  return(p)
}


#'  Polor Plot for Time Series Object
#' @export
#' @param ts.obj A univariate time series object of a class "ts", "zoo" or "xts" (support only series with either monthly or quarterly frequency)
#' @param title Add a title for the plot, default set to NULL
#' @param width The widht of the plot in pixels, default set to 600
#' @param height The height of the plot pixels, default set to 600
#' @param left Set the left margin of the plot in pixels, default set to 25 
#' @param right Set the right margin of the plot in pixels, default set to 25
#' @param top Set the top margin of the plot in pixels, default set to 25
#' @param bottom Set the bottom margin of the plot in pixels, default set to 25
#' @description Polor plot for time series object (ts, zoo, xts), currently support only monthly and quarterly frequency
#' @examples
#' data(USgas)
#' ts_polar(USgas)

ts_polar <- function(ts.obj, title = NULL, width = 600, height = 600, 
                     left = 25, right = 25, top = 25, bottom = 25) {
  
  `%>%` <- magrittr::`%>%`
  df <- df_wide <- p <- obj.name <-  NULL
  
  obj.name <- base::deparse(base::substitute(ts.obj))
  # Error handling
  if(is.null(title)){
    title <- paste("Polar Plot -", obj.name)
  } else if(!is.character(title)){
    title <- paste("Polar Plot -", obj.name)
    warning("The 'title' value is not valid, using the default title")
  }
  
  if (stats::is.ts(ts.obj)) {
    if (stats::is.mts(ts.obj)) {
      warning("The 'ts.obj' has multiple columns, only the first column will be plot")
      ts.obj <- ts.obj[, 1]
    }
    df <- base::data.frame(dec_left = floor(stats::time(ts.obj)), 
                           dec_right = stats::cycle(ts.obj), value = base::as.numeric(ts.obj))
    if(stats::frequency(ts.obj) == 12){
      df$dec_right <- base::factor(df$dec_right,
                                   levels = base::unique(df$dec_right),
                                   labels = base::month.abb[as.numeric(base::unique(df$dec_right))])
    } else if(stats::frequency(ts.obj) == 4){
      df$dec_right <- base::paste("Qr.", df$dec_right, sep = " ")
    } else {
      stop("The frequency of the series is invalid, ",
           "the function support only 'monthly' or 'quarterly' frequencies")
    }
  } else if (xts::is.xts(ts.obj) | zoo::is.zoo(ts.obj)) {
    if (!is.null(base::dim(ts.obj))) {
      if (base::dim(ts.obj)[2] > 1) {
        warning("The 'ts.obj' has multiple columns, only the first column will be plot")
        ts.obj <- ts.obj[, 1]
      }
    }
    freq <- xts::periodicity(ts.obj)[[6]]
    if (freq == "quarterly") {
      df <- base::data.frame(dec_left = lubridate::year(ts.obj), 
                             dec_right = lubridate::quarter(ts.obj), 
                             value = as.numeric(ts.obj))
    } else if (freq == "monthly") {
      df <- base::data.frame(dec_left = lubridate::year(ts.obj), 
                             dec_right = lubridate::month(ts.obj), value = as.numeric(ts.obj))
      df$dec_right <- base::factor(df$dec_right,
                                   levels = base::unique(df$dec_right),
                                   labels = base::month.abb[as.numeric(base::unique(df$dec_right))])
      # } else if (freq == "weekly") {
      #   df <- data.frame(dec_left = lubridate::year(ts.obj), 
      #                    dec_right = lubridate::week(ts.obj), value = as.numeric(ts.obj))
      # } else if (freq == "daily") {
      #   df <- data.frame(dec_left = lubridate::month(ts.obj), 
      #                    dec_right = lubridate::day(ts.obj), value = as.numeric(ts.obj))
    } else if (freq != "quarterly" & freq != "monthly") {
      stop("The frequency of the series is invalid,",
           "the function support only 'monthly' or 'quarterly' frequencies")
    }
    
  }
  
  p <- plotly::plot_ly(r = df$value, t = df$dec_right, 
                       width = width, height = height) %>% 
    plotly::add_area(color = factor(df$dec_left, ordered = TRUE)) %>%
    plotly::layout(orientation = -90, 
                   autosize = T,
                   title = title,
                   margin = list(
                     l = left,
                     r = right,
                     b = bottom,
                     t = top,
                     pad = 4
                   ))
  
  return(p)
}


#'  Heatmap Plot for Time Series
#' @export
#' @param ts.obj A univariate time series object of a class "ts", "zoo", "xts", and the data frame family (data.frame, data.table, tbl, tibble, etc.) with a 
#' Date column and at least one numeric column. This function support time series objects with a daily, weekly, monthly and quarterly frequencies 
#' @param last An integer (optional), set a subset using only the last observations in the series
#' @param wday An boolean, provides a weekday veiw for daily data (relevent only for objects with dates such as xts, zoo, data.frame, etc.)
#' @param color A character, setting the color palette of the heatmap. 
#' Corresponding to any of the RColorBrewer palette or any other arguments of the \code{\link[scales]{col_numeric}} function. 
#' By default using the "Blues" palette
#' @param title A character (optional), set the plot title
#' @param padding A boolean, if TRUE will add to the heatmap spaces between the observations
#' @description Heatmap plot for time series object by it periodicity (currently support only daily, weekly, monthly and quarterly frequencies)
#' @examples
#' data(USgas)
#' ts_heatmap(USgas)
#' 
#' # Show only the last 4 years
#' ts_heatmap(USgas, last = 4 *12)   

# --- The ts_heatmap function ---


ts_heatmap <- function(ts.obj, last = NULL, wday = TRUE, color = "Blues", title = NULL, padding = TRUE) {
  
  `%>%` <- magrittr::`%>%`
  df <- df1 <- df2 <- freq <- obj.name <- NULL
  diff_mean <- col_class <- date_col <-  numeric_col <- NULL
  main <- minor <- wday1 <- week <- y <- NULL
  obj.name <- base::deparse(base::substitute(ts.obj))
  
  
  
  # Set the plot title
  if(base::is.null(title)){
    title <- base::paste("Heatmap -", obj.name, sep = " ")
  } else if(!base::is.character(title)){
    warning("The 'title' object is not character object, using the default option")
    title <- base::paste("Heatmap -", obj.name, sep = " ")
  } 
  
  if(!base::is.logical(padding)){
    warning("The 'padding' argument is not valid, setting it to TRUE (default)")
    padding <- TRUE
  }
  # Error handling
  # Checking the last parameter
  if(!base::is.null(last)){
    if(!base::is.numeric(last) | last <= 0){
      stop("The 'last' parameter is not valid")
    } else {
      if(last != base::round(last)){
        stop("The 'last' parameter is not integer")
      }
    }
  }
  
  
  # Stage 1 transforming the time series object to data frame
  # Input ts object
  if(stats::is.ts(ts.obj)){
    if(stats::is.mts(ts.obj)){
      ts.obj <- ts.obj[,1]
      warning("The input object is a 'mts' class, by defualt will use only the first series as an input")
    }
    
    freq <- stats::frequency(ts.obj)
    
    if(base::length(ts.obj) < freq){
      stop("The length of the series is smaller than the length of full cycle")
    }
    
    start_main <- stats::start(ts.obj)[1]
    start_minor <- stats::start(ts.obj)[2]
    
    if(freq %in% c(7, 52, 365, 12, 4)){
      minor1 <- base::seq(from = start_minor, to = freq, by = 1)
      minor2 <- base::rep(x = 1:freq, length.out = base::length(ts.obj) - base::length(minor1))
      main1 <- base::rep(x = start_main, length.out = base::length(minor1))
      main2 <- base::rep(x = (start_main + 1):stats::end(ts.obj)[1], 
                         each = freq, 
                         len = base::length(ts.obj) - base::length(minor1))
      df <- base::data.frame(main = c(main1, main2), 
                       minor = c(minor1, minor2), 
                       y = base::as.numeric(ts.obj))
      
      if(freq == 365){
        time_unit <- "Day of the year" 
      } else if(freq == 7){
        time_unit <- "Day of the week"
      } else if(freq == 52){
        time_unit <- "Week"
      } else if(freq == 12){
        df$minor <-  base::factor(base::month.abb[df$minor], levels = month.abb)
        time_unit <- "Month"
      } else if(freq == 4){
        time_unit <- "Quarter"
      }
      
    } else {
      stop("The frequency of the input object is not valid, must be on of the following - daily, weekly, monthly or quarterly")
    } 
    # Input xts or zoo objects
  } else if(xts::is.xts(ts.obj) | zoo::is.zoo(ts.obj)){
    if(!base::is.null(base::ncol(ts.obj))){
      if(base::ncol(ts.obj) > 1){
        ts.obj <- ts.obj[,1]
        warning("The input object is a multiple time series object, by defualt will use only the first series as an input")
      }
    }
    if(lubridate::is.Date(zoo::index(ts.obj))){
      if(xts::periodicity(ts.obj)$scale == "daily"){
        df <- base::data.frame(main = lubridate::year(zoo::index(ts.obj)), 
                         minor = lubridate::yday(zoo::index(ts.obj)), 
                         wday = lubridate::wday(zoo::index(ts.obj)),
                         wday1 = lubridate::wday(zoo::index(ts.obj),label = TRUE),
                         y = base::as.numeric(ts.obj[,1]))
        time_unit <- "Day"
      } else if(xts::periodicity(ts.obj)$scale == "weekly"){
        df <- base::data.frame(main = lubridate::year(zoo::index(ts.obj)), 
                         minor = lubridate::week(zoo::index(ts.obj)), 
                         y = base::as.numeric(ts.obj[,1]))
        time_unit <- "Week"
      } else if(xts::periodicity(ts.obj)$scale == "monthly"){
        df <- base::data.frame(main = lubridate::year(zoo::index(ts.obj)), 
                         minor = lubridate::month(zoo::index(ts.obj), label = TRUE), 
                         y = base::as.numeric(ts.obj[,1]))
        time_unit <- "Month"
      } else if(xts::periodicity(ts.obj)$scale == "quarterly"){
        df <- base::data.frame(main = lubridate::year(zoo::index(ts.obj)), 
                         minor = lubridate::quarter(zoo::index(ts.obj)), 
                         y = base::as.numeric(ts.obj[,1]))
        time_unit <- "Quarter"
      } 
    } else if(inherits(zoo::index(ts.obj), "yearqtr") & xts::periodicity(ts.obj)$scale == "quarterly"){
      df <- base::data.frame(main = lubridate::year(zoo::index(ts.obj)), 
                       minor = lubridate::quarter(zoo::index(ts.obj)), 
                       y = base::as.numeric(ts.obj[,1]))
      time_unit <- "Quarter"
    } else if(inherits(zoo::index(ts.obj), "yearmon") & xts::periodicity(ts.obj)$scale == "monthly"){
      df <- base::data.frame(main = lubridate::year(zoo::index(ts.obj)), 
                       minor = lubridate::month(zoo::index(ts.obj), label = TRUE), 
                       y = base::as.numeric(ts.obj[,1]))
      time_unit <- "Month"
    }
    # Input data.frame or tbl or data.table objects
  } else if(base::is.data.frame(ts.obj) | 
            dplyr::is.tbl(ts.obj) | 
            data.table::is.data.table(ts.obj)){ # Case 3 the object is a data frame 
    # Identify the columns classes
    
    ts.obj <- base::as.data.frame(ts.obj)
    col_class <- base::lapply(ts.obj, class)
    col_date <- base::lapply(ts.obj, lubridate::is.Date)
    col_POSIXt <- base::lapply(ts.obj, lubridate::is.POSIXt)
    
    # Check if Date object exist
    if(base::any(col_date == TRUE) & base::any(col_POSIXt == TRUE)){
      d <- t <- NULL
      d <- base::min(base::which(col_date == TRUE))
      t <- base::min(base::which(col_POSIXt == TRUE))
      if(d > t){
        warning("The data frame contains multiple date or time objects,",
                "using the first one as the plot index")
        date_col <- t
      } else {
        warning("The data frame contains multiple date or time objects,",
                "using the first one as the plot index")
        date_col <- d
      }
    } else if(base::any(col_date == TRUE) | base::any(col_POSIXt == TRUE)){
      if(base::any(col_date == TRUE)){
        if(base::length(base::which(col_date == TRUE)) > 1){
          date_col <-  base::min(base::which(col_date == TRUE))
          warning("There are multipe 'date' objects in the data frame,",
                  "using the first one object as the plot index")
        } else {
          date_col <-  base::min(base::which(col_date == TRUE))
        }
      } else if(base::any(col_POSIXt == TRUE)){
        if(base::length(base::which(col_POSIXt == TRUE)) > 1){
          date_col <-  base::min(base::which(col_POSIXt == TRUE))
          warning("There are multipe 'POSIXt' objects in the data frame,",
                  "using the first one as the plot index")
        } else {
          date_col <-  base::min(base::which(col_POSIXt == TRUE))
        }
      } 
    }else {
      stop("No 'Date' or 'POSIXt' object available in the data frame,", 
           "please check if the data format defined properly")
    }
    
    
    # Identify the numeric/integer objects in the data frame  
    numeric_col <- base::which(col_class == "numeric" | col_class == "integer")
    # Stop if there is no any numeric values in the data frame, otherwise build the data frame 
    if(base::length(numeric_col) == 0){
      stop("None of the data frame columns is numeric,", 
           "please check if the data format is defined properly")
    }
    
    # Check if the object has multiple time series
    df_temp <- NULL
    if(length(numeric_col) == 1){
      df_temp <- base::data.frame(date = ts.obj[, date_col], y =  ts.obj[, numeric_col])
    } else {
      warning("The input object is a multiple time series object, by defualt will use only the first series as an input")
      df_temp <- base::data.frame(date = ts.obj[, date_col], ts.obj[, numeric_col[1]])
    }
    
    data_diff <- NULL
    date_diff <- base::diff(as.numeric(df_temp$date))
    
    if(base::min(date_diff) == base::max(date_diff) & base::mean(date_diff) == 1){
      # Daily
      df <- base::data.frame(main = lubridate::year(df_temp$date),
                       minor = lubridate::yday(df_temp$date),
                       wday = lubridate::wday(df_temp$date),
                       wday1 = lubridate::wday(df_temp$date, label = TRUE),
                       y = df_temp$y)
      time_unit <- "Day"
    } else if(base::min(date_diff) == base::max(date_diff) & base::mean(date_diff) == 7){
      # Weekly
      df <- base::data.frame(main = lubridate::year(df_temp$date),
                       minor = lubridate::week(df_temp$date),
                       y = df_temp$y)
      time_unit <- "Week"
    } else if(base::min(date_diff) >= 28 &  base::max(date_diff) <= 31 & 
              base::mean(date_diff) < 31 & base::mean(date_diff) > 28){
      # Monthly
      df <- base::data.frame(main = lubridate::year(df_temp$date),
                       minor = lubridate::month(df_temp$date, label = TRUE),
                       y = df_temp$y)
      time_unit <- "Month"
    } else if(base::min(date_diff) >= 90 &  base::max(date_diff) <= 92 & 
              base::mean(date_diff) < 92 & base::mean(date_diff) > 90){
      # Quarterly
      df <- base::data.frame(main = lubridate::year(df_temp$date),
                       minor = lubridate::quarter(df_temp$date),
                       y = df_temp$y)
      time_unit <- "Quarter"
      
    } else{
      stop("The frequency of the input dataset is not valid, must be on of the following - daily, weekly, monthly or quarterly")
    }
  }
  
  if(!base::is.null(last)){
    df <- df[(base::nrow(df) - last + 1):base::nrow(df),]
  }
  
  
  
  if(padding){
    if(time_unit %in% c("Month", "Quarter")){
      xgap = 3
      ygap = 3
    } else if(time_unit == "Day" & wday){
      xgap = 1
      ygap = 1
    }else {
      xgap = 1
      ygap = NULL
    }
  } else {
    xgap <- NULL
    ygap <- NULL
  }
  
  
  if(time_unit == "Day" & wday){
    p_list <- vals <- o <- cols <- colz <- NULL
    df$vals <- scales::rescale(df$y)
    vals <- unique(scales::rescale(df$y))
    o <- base::order(vals, decreasing = FALSE)
    cols <- scales::col_numeric(color, domain = NULL)(vals)
    colz <- stats::setNames(base::data.frame(vals[o], cols[o]), NULL)
    colz_name <- colz
    names(colz_name) <- c("vals", "cols")
    df <- base::suppressMessages(df %>% dplyr::left_join(colz_name))
    p_list <- base::lapply(base::min(df$main):base::max(df$main), function(i){
      df1 <- NULL
      df1 <- df %>% dplyr::filter(main == i) %>%
        dplyr::arrange(minor) 
      if(df1$minor[1] != 1){
        df1$week <-  base::rep(base::ceiling(df1$minor[1] / 7):53, each = 7 )[df1$wday[1]:(base::nrow(df1) + df1$wday[1] - 1)]
      } else if(df1$minor[1] == 1){
        df1$week <- base::rep(1:53, each = 7)[df1$wday[1]:(base::nrow(df1) + df1$wday[1] - 1)]  
      }
      
      
      colz_sub <- df1 %>% dplyr::select(vals, cols) %>%
        dplyr::arrange(-vals)
      colz_sub <- stats::setNames(colz_sub, NULL)
      
      df2 <- base::suppressMessages(df1 %>% dplyr::select(wday1, week, y) %>%reshape2::dcast(wday1 ~ week))
      
      z <- base::as.matrix(df2[, -1])
      z_text <- base::matrix(NA, nrow = nrow(z), ncol = ncol(z))
      for(c in 1:base::ncol(z_text)){
        for(r in 1:base::nrow(z_text)){
          z_text[r, c] <- base::paste('Value: ', z[r,c],
                                      '<br> Year : ', i,
                                      '<br>' ,time_unit, ' :', r, sep = " ")
        }
      }
      if(i == base::min(df$main)){
        showscale <- TRUE
      } else {
        showscale <- FALSE
      }
      
      df_temp <- base::suppressMessages(df1 %>% dplyr::select(y, cols) %>%
                                          dplyr::distinct() %>% 
                                          dplyr::arrange(y))
      
      df_temp$scale <- scales::rescale(df_temp$y)
      colz_sub <- df_temp %>% dplyr::select(scale, cols)
      colz_sub <- stats::setNames(colz_sub, NULL)
      
      p_day <- plotly::plot_ly(z = z, x = colnames(df2[,-1]), y = df2[,1], 
                               type = "heatmap",
                               colorscale = colz_sub,
                               hoverinfo = 'text',
                               text = z_text,
                               xgap = xgap,
                               ygap = xgap,
                               showscale = showscale
      ) %>% plotly::layout(
        xaxis = list(title = i, range = c(0,54)),
        yaxis = list(title = time_unit),
        annotations = list(text = i, 
                           showarrow = FALSE, 
                           yref = "paper",
                           yanchor = "bottom",
                           xanchor = "center",
                           align = "center",
                           x = 25,
                           y = -0.25)
      ) %>% plotly::colorbar(limits = c(base::min(df1$y), base::max(df1$y)))
      
      return(p_day)
    })
    p <- plotly::subplot(p_list, nrows = base::length(base::unique(df$main))) %>% 
      plotly::layout(title = title)
  } else {
    df1 <- base::suppressMessages(df %>% reshape2::dcast(minor ~ main))
    
    
    
    z <- base::as.matrix(df1[, -1])
    z_text <- base::matrix(NA, nrow = nrow(z), ncol = ncol(z))
    # time_unit <- base::trimws(base::names(df)[1])
    # time_unit_up <- base::paste(base::toupper(base::substr(time_unit, 1, 1)), 
    #                             base::substr(time_unit,2, base::nchar(time_unit)), sep = "")
    for(c in 1:base::ncol(z_text)){
      for(r in 1:base::nrow(z_text)){
        z_text[r, c] <- base::paste('Value: ', z[r,c],
                                    '<br> Year : ', base::colnames(z)[c],
                                    '<br>' ,time_unit, ' :', r, sep = " ")
      }
    }
    
    
    
    vals <- base::unique(scales::rescale(c(df$y)))
    o <- order(vals, decreasing = FALSE)
    cols <- scales::col_numeric(color, domain = NULL)(vals)
    colz <- stats::setNames(base::data.frame(vals[o], cols[o]), NULL)
    
    p <- plotly::plot_ly(z = z, x = colnames(df1[,-1]), y = df1[,1], 
                         type = "heatmap",
                         colorscale = colz,
                         hoverinfo = 'text',
                         text = z_text,
                         xgap = xgap,
                         ygap = ygap
    ) %>% plotly::layout(
      title = title,
      xaxis = list(title = "Year"),
      yaxis = list(title = time_unit)
    )
  }
  return(p)
}



#' 3D Surface Plot for Time Series
#' @export
#' @param ts.obj a univariate time series object of a class "ts", "zoo" or "xts" (support only series with either monthly or quarterly frequency)
#' @description 3D surface plot for time series object by it periodicity (currently support only monthly and quarterly frequency)
#' @examples
#' ts_surface(USgas) 

ts_surface <- function(ts.obj) {
  
  `%>%` <- magrittr::`%>%`
  df <-  p <- obj.name <-  NULL
  
  obj.name <- base::deparse(base::substitute(ts.obj))
  df <- TSstudio::ts_reshape(ts.obj, type = "wide")
  z <- base::as.matrix(df[, -1])
  z_text <- base::matrix(NA, nrow = nrow(z), ncol = ncol(z))
  time_unit <- base::trimws(base::names(df)[1])
  time_unit_up <- base::paste(base::toupper(base::substr(time_unit, 1, 1)), 
                              base::substr(time_unit,2, base::nchar(time_unit)), sep = "")
  for(c in 1:base::ncol(z_text)){
    for(r in 1:base::nrow(z_text)){
      z_text[r, c] <- base::paste('Value: ', z[r,c],
                                  '<br> Year : ', base::colnames(z)[c],
                                  '<br>' ,time_unit_up, ' :', r, sep = " ")
    }
  }
  p <- plotly::plot_ly(z = z, x = colnames(df[,-1]), y = df[,1],
                       hoverinfo = 'text',
                       text = z_text
  ) %>%
    plotly::add_surface() %>% plotly::layout(
      title = base::paste("Surface Plot -", obj.name, sep = " "),
      scene = list(xaxis = list(title = "Years"),
                   yaxis= list(title = time_unit_up),
                   zaxis= list(title = "Value")
      )
    )
  
  
  return(p)
}


#' Moving Average Method for Time Series Data
#' @export
#' @param ts.obj a univariate time series object of a class "ts", "zoo" or "xts" (support only series with either monthly or quarterly frequency)
#' @param n A single or multiple integers (by default using 3, 6, and 9 as inputs), 
#' define a two-sides moving averages by setting the number of past and future to use 
#' in each moving average window along with current observation. 
#' @param n_left A single integer (optional argument, default set to NULL), can be used, 
#' along with the n_right argument, an unbalanced moving average. 
#' The n_left defines the number of lags to includes in the moving average.
#' @param n_right A single integer (optional argument, default set to NULL), can be used, 
#' along with the n_left argument, to set an unbalanced moving average. 
#' The n_right defines the number of negative lags to includes in the moving average.
#' @param double A single integer, an optional argument. If not NULL (by default), will apply a second moving average process on the initial moving average output
#' @param plot A boolean, if TRUE will plot the results
#' @param multiple A boolean, if TRUE (and n > 1) will create multiple plots, one for each moving average degree. By default is set to FALSE
#' @param separate A boolean, if TRUE will separate the orignal series from the moving average output
#' @param title A character, if not NULL (by default), will use the input as the plot title
#' @param Xtitle A character, if not NULL (by default), will use the input as the plot x - axis title
#' @param Ytitle A character, if not NULL (by default), will use the input as the plot y - axis title
#' @param margin A numeric, set the plot margin when using the multiple or/and separate option, default value is 0.03
#' @param show_legend A boolean, if TRUE will show the plot legend
#' @description Calculate the moving average (and double moving average) for time series data
#' @return A list with the original series, the moving averages outputs and the plot
#' @details 
#' A one-side moving averages (also known as simple moving averages) calculation for Y[t] (observation Y of the series at time t):
#' 
#' MA[t|n] = (Y[t-n] + Y[t-(n-1)] +...+ Y[t]) / (n + 1), 
#' 
#' where n defines the number of consecutive observations to be used on each rolling window along with the current observation 
#' 
#' Similarly, a two-sided moving averages with an order of (2*n + 1) for Y[t]:
#' 
#' MA[t|n] = (Y[t-n] + Y[t-(n-1)] +...+ Y[t] +...+ Y[t+(n-1)] + Y[t+n]) / (2*n + 1)
#' 
#' Unbalanced moving averages with an order of (k1 + k2 + 1) for observation Y[t]:
#' 
#' MA[t|k1 & k2] = (Y[t-k1] + Y[t-(k1-1)] +...+ Y[t] +...+ Y[t+(k2-1)] + Y[t+k2]) / (k1 + k2 + 1)
#' 
#' The unbalanced moving averages is a special case of two-sides moving averages, 
#' where k1 and k2 represent the number of past and future periods, 
#' respectively to be used in each rolling window, and k1 != k2 
#' (otherwise it is a normal two-sided moving averages function)
#' 
#' @examples
#' \dontrun{
#' # A one-side moving average order of 7
#' USgas_MA7 <- ts_ma(USgas, n_left = 6, n = NULL)
#' 
#' # A two-sided moving average order of 13
#' USgas_two_side_MA <- ts_ma(USgas, n = 6)
#' 
#' # Unbalanced moving average of order 12
#'  USVSales_MA12 <- ts_ma(USVSales, n_left = 6, n_right = 5, n = NULL, 
#'  title = "US Monthly Total Vehicle Sales - MA", 
#'  Ytitle = "Thousand of Units")
#'
#' # Adding double MA of order 2 to balanced the series:
#' USVSales_MA12 <- ts_ma(USVSales, n_left = 6, n_right = 5, n = NULL, 
#'  double = 2,
#'  title = "US Monthly Total Vehicle Sales - MA", 
#'  Ytitle = "Thousand of Units")
#' 
#' # Adding several types of two-sided moving averages along with the unblanced
#' # Plot each on a separate plot
#' USVSales_MA12 <- ts_ma(USVSales, n_left = 6, n_right = 5, n = c(3, 6, 9), 
#' double = 2, multiple = TRUE,
#' title = "US Monthly Total Vehicle Sales - MA", 
#' Ytitle = "Thousand of Units")
#' }


ts_ma <- function(ts.obj, 
                  n = c(3, 6, 9), 
                  n_left = NULL,
                  n_right = NULL,
                  double = NULL, 
                  plot = TRUE, show_legend = TRUE,
                  multiple = FALSE, separate = TRUE, margin = 0.03,
                  title = NULL, Xtitle = NULL, Ytitle = NULL){
  
  `%>%` <- magrittr::`%>%`
  
  obj.name <- ts_merged <- ts_obj <- ts_temp <- ts_ma <- c <- p <-  p_m <- ma_order <-  NULL
  output <- titles <- dobule <- NULL
  left_flag <- right_flag <- k_flag <- FALSE
  obj.name <- base::deparse(base::substitute(ts.obj))
  
  # Error Handling  
  if(stats::is.ts(ts.obj)){
    if(stats::is.mts(ts.obj)){
      ts.obj <- ts.obj[,1]
      warning("The input object is a 'mts' class, by defualt will use only the first series as an input")
    }
  } else if(xts::is.xts(ts.obj) | zoo::is.zoo(ts.obj)){
    if(!base::is.null(base::ncol(ts.obj))){
      if(base::ncol(ts.obj) > 1){
        ts.obj <- ts.obj[,1]
        warning("The input object is a multiple time series object, by defualt will use only the first series as an input")
      }
    }
  }
  
  if((base::is.null(n) & base::is.null(n_left) & base::is.null(n_right)) | 
     (!base::is.numeric(n) & !base::is.numeric(n_left) & !base::is.numeric(n_right))){
    stop("Neither of the moving averages arguments set properly ('n', 'n_left', 'n_right')")
  }
  
  if(!base::is.logical(plot)){
    warning("The value of the 'plot' argument is not valid (can apply either TRUE or FALSE) and will be ignore")
    plot <- TRUE
  }
  
  if(!base::is.logical(show_legend)){
    warning("The value of the 'show_legend' argument is not valid (can apply either TRUE or FALSE) and will be ignore")
    show_legend <- FALSE
  }
  
  if(!base::is.logical(separate)){
    warning("The value of the 'separate' argument is not valid (can apply either TRUE or FALSE) and will be ignore")
    separate <- TRUE
  }
  
  if(!base::is.logical(multiple)){
    warning("The value of the 'multiple' argument is not valid (can apply either TRUE or FALSE) and will be ignore")
    multiple <- FALSE
  } else if(base::length(n) == 1 & multiple & 
            base::is.null(n_left) &
            base::is.null(n_right)){
    warning("The 'multiple' aregument cannot be used when using multiple moving averages")
    multiple <- FALSE
  } else if((base::length(n) > 1 | (base::length(n) ==1 & 
                                    (!base::is.null(n_left) | !base::is.null(n_right)))) &
            multiple){
    p_m <- list()
  }
  
  if(!base::is.null(title)){
    if(!base::is.character(title)){
      warning("The value of the 'title' is not valid (only character can be used as an input), and will be ignore")
      title <- NULL
    }
  } else {
    title <- paste(obj.name, "- Moving Average", sep = " ")
  }
  
  if(!base::is.null(Xtitle)){
    if(!base::is.character(Xtitle)){
      warning("The value of the 'Xtitle' is not valid (only character can be used as an input), and will be ignore")
      Xtitle <- NULL
    }
  }
  
  if(!base::is.null(Ytitle)){
    if(!base::is.character(Ytitle)){
      warning("The value of the 'Ytitle' is not valid (only character can be used as an input), and will be ignore")
      Ytitle <- NULL
    }
  }
  
  if(!base::is.null(double)){
    if(!base::is.numeric(double)){
      warning("The 'double' parameter is not a numeric number and will be ignore")
      double <- NULL
    } else if(!base::all(double %% 1 == 0)){
      warning("The 'double' parameter is not an integer number and will be ignore")
      double <- NULL
    }
  } else if(base::length(double) > 1){
    warning("The 'double' parameter is restricted to single value (integer), only the first one will be used")
    double <- dobule[1]
  }
  
  
  if(!base::is.null(n_left)){
    if(!base::is.numeric(n_left)){
      stop("The 'n_left' argument is not valid, please make sure that you are using only integers as input")
    } else if(base::length(n_left) != 1){
      warning("The 'n_left' argument has too many inputs, can hanlde only single integer. Will use only the first input")
      n_left <- n_left[1]
    } else if(n_left %% 1 != 0){
      stop("The 'n_left' argument is not an integer type")
    } else {
      ma_order <- n_left
    }
  }
  
  if(!base::is.null(n_right)){
    if(!base::is.numeric(n_right)){
      stop("The 'n_right' argument is not valid, please make sure that you are using only integers as input")
    } else if(base::length(n_right) != 1){
      warning("The 'n_right' argument has too many inputs, can hanlde only single integer. Will use only the first input")
      n_right <- n_right[1]
    } else if(n_right %% 1 != 0){
      stop("The 'n_right' argument is not an integer type")
    } else if(!base::is.null(n_left)){
      ma_order <- n_left + n_right
    } else {
      ma_order <- n_right
    }
  }
  
  if(!base::is.null(n)){
    if(!base::is.numeric(n)){
      stop("The 'n' argument is not valid, please make sure that you are using only integers as input")
    } else if(!base::all(n %% 1 == 0)){
      stop("The 'n' argument is not valid, please make sure that you are using only integers as input")
    } else if(base::length(n) > 8){
      warning("The 'n' parameter is restricted up to 8 inputs (integers), only the first 8 values will be used")
      n <- n[1:8]
    } else{ 
      if(stats::is.ts(ts.obj) | xts::is.xts(ts.obj) | zoo::is.zoo(ts.obj)){
        if(base::max(n) * 2 + 1 > base::as.data.frame(ts.obj) %>% base::nrow()){
          stop("The length of the series is too short to apply the moving average with the given 'n' parameter")
        }
      } else if(base::is.data.frame(ts.obj) | 
                dplyr::is.tbl(ts.obj) | 
                data.table::is.data.table(ts.obj)){
        if(base::max(n) * 2 + 1 > base::nrow(ts.obj)){
          stop("The length of the series is too short to apply the moving average with the given 'n' parameter")
        }
      }
    }
  }
  
  
  
  # Setting function to calculate moving average
  ma_fun <- function(ts.obj, n_left, n_right){
    if(stats::is.ts(ts.obj)){
      ts_left <- ts_right <- ts_intersect <- ma_order <-  NULL
      if(!base::is.null(n_left)){
        for(i in 1:n_left){
          ts_left <- stats::ts.intersect(stats::lag(ts.obj, k = -i), ts_left)
        }
        ma_order <- n_left
      }
      
      if(!base::is.null(n_right)){
        for(i in 1:n_right){
          ts_right <- stats::ts.intersect(stats::lag(ts.obj, k =  i), ts_right)
        }
        if(!base::is.null(n_left)){
          ma_order <- ma_order + n_right
        } else {
          ma_order <- n_right
        }
      }
      ma_order <- ma_order + 1
      ts_intersect <- TSstudio::ts_sum(stats::ts.intersect(ts_left, ts.obj, ts_right)) / (ma_order)
    } else if(xts::is.xts(ts.obj)){
      
      ts_left <- ts_right <- ts_intersect <- ma_order <-  NULL
      if(!base::is.null(n_left)){
        ts_left <- stats::lag(ts.obj, k = c(1:n_left))
        ma_order <- n_left
      }
      
      if(!base::is.null(n_right)){
          ts_right <- stats::lag(ts.obj, k = c((-1):(-n_right)))
        if(!base::is.null(n_left)){
          ma_order <- ma_order + n_right
          ts.merged <- xts::merge.xts(ts_left, ts.obj, ts_right)
        } else {
          ma_order <- n_right
          ts.merged <- xts::merge.xts(ts.obj, ts_right)
        }
      } else if(!base::is.null(n_left)){
        ts.merged <- xts::merge.xts(ts_left, ts.obj)
      }
      ma_order <- ma_order + 1
      ts.merged$total <- base::rowSums(ts.merged) / (ma_order)
      ts_intersect <- ts.merged$total
    }else if(zoo::is.zoo(ts.obj)){
      
      ts_left <- ts_right <- ts_intersect <- ma_order <- NULL
      if(!base::is.null(n_left)){
        ts_left <- stats::lag(ts.obj, k = c((-1):(-n_left)))
        ma_order <- n_left
      }
      
      if(!base::is.null(n_right)){
          ts_right <- stats::lag(ts.obj, k = c(1:n_right))
        if(!base::is.null(n_left)){
          ma_order <- ma_order + n_right
          ts.merged <- zoo::merge.zoo(ts_left, ts.obj, ts_right)
        } else {
          ma_order <- n_right
          ts.merged <- zoo::merge.zoo(ts.obj, ts_right)
        }
      } else if(!base::is.null(n_left)){
        ts.merged <- zoo::merge.zoo(ts_left, ts.obj)
      }
      ma_order <- ma_order + 1

      ts.merged$total <- base::rowSums(ts.merged) / (ma_order)
      ts_intersect <- ts.merged$total
    }
    
    
    return(ts_intersect)
  }
  
  
  # Creating a list  
  output <- list()
  titles <- list()
  if(!base::is.null(n)){
    for(i in n){
      ts_ma1 <- ma_title <- ma_order <- NULL
      ma_order <- 2 * i + 1
      ts_ma1 <- ma_fun(ts.obj = ts.obj, n_left = i, n_right = i)
      ma_title <- paste("Two Sided Moving Average - Order", 2 * i + 1, sep = " ")
      base::eval(base::parse(text = base::paste("output$ma_", i, " <- ts_ma1", sep = "")))
      base::eval(base::parse(text = base::paste("titles$ma_", i, " <- ma_title", sep = "")))
      if(!base::is.null(double)){
        ts_ma_d <- ma_title <- NULL
        ts_ma_d <- ma_fun(ts.obj = ts_ma1, n_left = double, n_right = double)
        ma_title <- paste("Double Two Sided Moving Average - Order", 2 * double + 1, "x", ma_order, sep = " ")
        base::eval(base::parse(text = base::paste("output$double_ma_", 2 * double + 1,"_x_", ma_order, " <- ts_ma_d", sep = "")))
        base::eval(base::parse(text = base::paste("titles$double_ma_", 2 * double + 1,"_x_", ma_order, " <- ma_title", sep = "")))
      }
    }
  }
  
  if(!base::is.null(n_left) | !base::is.null(n_right)){
    ts_ma2 <- ma_title <- ma_order <- NULL
    
    ma_order <- 1
    
    if(!base::is.null(n_right)){
      ma_order <- ma_order + n_right
    } 
    
    if(!base::is.null(n_left)){
      ma_order <- ma_order + n_left
    } 
    
    ts_ma2 <- ma_fun(ts.obj = ts.obj, n_left = n_left, n_right = n_right)
    ma_title <- paste("Two Sided Moving Average - Order", ma_order, sep = " ")
    base::eval(base::parse(text = base::paste("output$unbalanced_ma_", ma_order, " <- ts_ma2", sep = "")))
    base::eval(base::parse(text = base::paste("titles$unbalanced_ma_", ma_order, " <- ma_title", sep = "")))
    if(!base::is.null(double)){
      ts_ma_d <- ma_title <- NULL
      ts_ma_d <- ma_fun(ts.obj = ts_ma2, n_left = double, n_right = double)
      ma_title <- paste("Double Two Sided Moving Average - Order", 2 * double + 1, "x",  ma_order, sep = " ")
      base::eval(base::parse(text = base::paste("output$double_unbalanced_ma_", 2 * double + 1,"_x_", ma_order, " <- ts_ma2", sep = "")))
      base::eval(base::parse(text = base::paste("titles$double_unbalanced_ma_", 2 * double + 1,"_x_", ma_order, " <- ma_title", sep = "")))
    }
  }
  
  
  ma_list <- base::names(output)[base::which(base::names(output) != "series")]
  if(separate & multiple){
    plots <- c <- NULL
    plots <- list()
    plots[[1]] <- plotly::plot_ly(x = stats::time(ts.obj), 
                                  y = base::as.numeric(ts.obj), 
                                  name = obj.name, 
                                  type = "scatter", 
                                  mode = "lines", 
                                  line = list(color = "#00526d"),
                                  showlegend = show_legend) %>%
      plotly::layout(annotations = list(text =  obj.name, 
                                        xref = "paper", 
                                        yref = "paper",
                                        yanchor = "bottom",
                                        xanchor = "center",
                                        align = "cneter",
                                        x = 0.5,
                                        y = 1, 
                                        showarrow = FALSE,
                                        font = list(size = 12)))
    
    c <- 2
    color_ramp <- viridis::inferno(base::length(output), alpha = 1, direction = 1, begin = 0, end = 0.9)
    for(i in names(output)){
      plots[[c]] <- plotly::plot_ly(x = stats::time(output[[i]]), 
                                    y = base::as.numeric(output[[i]]), 
                                    type = "scatter",
                                    mode = "line",
                                    line = list(color = color_ramp[c -1])) %>%
        plotly::layout(annotations = list(text =  titles[[i]], 
                                          xref = "paper", 
                                          yref = "paper",
                                          yanchor = "bottom",
                                          xanchor = "center",
                                          align = "cneter",
                                          x = 0.5,
                                          y = 1, 
                                          showarrow = FALSE,
                                          font = list(size = 12)))
      c <- c + 1
    }
    plot_rows <- ifelse(length(plots) > 5, base::ceiling(base::length(plots)/2), base::length(plots))
    if(show_legend){
      output$plot <- plotly::subplot(plots, nrows = plot_rows, margin = margin) 
    } else {
      output$plot <- plotly::subplot(plots, nrows = plot_rows, margin = margin) %>% plotly::hide_legend()
    }
    
  } else if(!separate & multiple){
    plots <- c <- NULL
    plots <- list()
    c <- 1
    color_ramp <- viridis::inferno(base::length(output), alpha = 1, direction = 1, begin = 0, end = 0.9)
    for(i in names(output)){
      plots[[c]] <- plotly::plot_ly(x = stats::time(ts.obj), 
                                    y = base::as.numeric(ts.obj), 
                                    name = obj.name, 
                                    type = "scatter", 
                                    mode = "lines", 
                                    line = list(color = "#00526d"),
                                    showlegend = show_legend) %>%
        plotly::add_lines(x = stats::time(output[[i]]), 
                          y = base::as.numeric(output[[i]]),
                          line = list(color = color_ramp[c - 1], dash = "dash")
        ) %>%
        plotly::layout(annotations = list(text =  titles[[i]], 
                                          xref = "paper", 
                                          yref = "paper",
                                          yanchor = "bottom",
                                          xanchor = "center",
                                          align = "cneter",
                                          x = 0.5,
                                          y = 1, 
                                          showarrow = FALSE,
                                          font = list(size = 12)))
      
      c <- c + 1
    }
    plot_rows <- ifelse(length(plots) > 5, base::ceiling(base::length(plots)/2), base::length(plots))
    if(show_legend){
      output$plot <- plotly::subplot(plots, nrows = plot_rows, margin = margin) 
    } else {
      output$plot <- plotly::subplot(plots, nrows = plot_rows, margin = margin) %>% plotly::hide_legend()
    }
  } else if(separate & !multiple){
    p1 <- p2 <- c <-  NULL
    p1 <- plotly::plot_ly(x = stats::time(ts.obj), 
                          y = base::as.numeric(ts.obj), 
                          name = obj.name, 
                          type = "scatter", 
                          mode = "lines", 
                          line = list(color = "#00526d"),
                          showlegend = TRUE) %>%
      plotly::layout(annotations = list(text =  obj.name, 
                                        xref = "paper", 
                                        yref = "paper",
                                        yanchor = "bottom",
                                        xanchor = "center",
                                        align = "cneter",
                                        x = 0.5,
                                        y = 1, 
                                        showarrow = FALSE,
                                        font = list(size = 12)))
    
    
    c <- 1 
    color_ramp <- viridis::inferno(base::length(output), alpha = 1, direction = 1, begin = 0, end = 0.9)
    p2 <- plotly::plot_ly()
    for(i in names(output)){
      p2 <- p2 %>% 
        plotly::add_lines(
          x = stats::time(output[[i]]), 
          y = base::as.numeric(output[[i]]),
          line = list(color = color_ramp[c], dash = "dash"),
          name = titles[[i]]
        )
      c <- c + 1
    }
    p2 <- p2 %>% 
      plotly::layout(annotations = list(text =  "Moving Average Output", 
                                        xref = "paper", 
                                        yref = "paper",
                                        yanchor = "bottom",
                                        xanchor = "center",
                                        align = "cneter",
                                        x = 0.5,
                                        y = 1, 
                                        showarrow = FALSE,
                                        font = list(size = 12)))
    
    
    
    if(show_legend){
      output$plot <- plotly::subplot(p1, p2, nrows = 2, margin = margin) 
    } else {
      output$plot <- plotly::subplot(p1, p2, nrows = 2, margin = margin) %>% plotly::hide_legend()
    }
    
  }else if(!separate & !multiple){
    p <- c <- NULL
    color_ramp <- viridis::inferno(base::length(output), alpha = 1, direction = 1, begin = 0, end = 0.9)
    p <- plotly::plot_ly(x = stats::time(ts.obj), 
                         y = base::as.numeric(ts.obj), 
                         name = obj.name, 
                         type = "scatter", 
                         mode = "lines", 
                         line = list(color = "#00526d"),
                         showlegend = TRUE) %>%
      plotly::layout(annotations = list(text =  obj.name, 
                                        xref = "paper", 
                                        yref = "paper",
                                        yanchor = "bottom",
                                        xanchor = "center",
                                        align = "cneter",
                                        x = 0.5,
                                        y = 1, 
                                        showarrow = FALSE,
                                        font = list(size = 12)))
    
    
    c <- 1 
    for(i in names(output)){
      p <- p %>% 
        plotly::add_lines(
          x = stats::time(output[[i]]), 
          y = base::as.numeric(output[[i]]),
          line = list(color = color_ramp[c], dash = "dash"),
          name = titles[[i]]
        )
      c <- c + 1
    }
    p <- p %>% 
      plotly::layout(annotations = list(text =  "Moving Average Output", 
                                        xref = "paper", 
                                        yref = "paper",
                                        yanchor = "bottom",
                                        xanchor = "center",
                                        align = "cneter",
                                        x = 0.5,
                                        y = 1, 
                                        showarrow = FALSE,
                                        font = list(size = 12)))
    
    
    
    if(show_legend){
      output$plot <- p 
    } else {
      output$plot <- p %>% plotly::hide_legend()
    }
  }
  
  
  if(plot){
    print(output$plot)
  }
  
  # Saving the original series
  output$series <- ts.obj
  
  class(output) <- "ts_ma"
  return(output)  
}  


#' Quantile Plot for Time Series
#' @export
#' @param ts.obj A univariate time series object of a class "zoo", "xts", or data frame family ("data.frame", "data.table", "tbl")
#' @param upper A numeric value between 0 and 1 (excluding 0, and greater than the "lower" argument) set the upper bound of the quantile plot 
#' (using the "probs" argument of the \code{\link[stats]{quantile}} function). By default set to 0.75
#' @param lower A numeric value between 0 and 1 (excluding 1, and lower than the "upper" argument) set the upper bound of the quantile plot 
#' (using the "probs" argument of the \code{\link[stats]{quantile}} function). By default set to 0.25
#' @param period A character, set the period level of the data for the quantile calculation and plot representation. 
#' Must be one level above the input frequency (e.g., an hourly data can represent by daily, weekdays, monthly, quarterly and yearly). 
#' Possible options c("daily", "weekdays", "monthly", "quarterly", "yearly")
#' @param n An integer, set the number of plots rows to display (by setting the nrows argument in the \code{\link[plotly]{subplot}} function), must be an integer between 1 and the frequency of the period argument.
#' @param Xtitle A character, set the X axis title, default set to NULL
#' @param Ytitle A character, set the Y axis title, default set to NULL
#' @param title A character, set the plot title, default set to NULL
#' @description A quantile plot of time series data, allows the user to display a quantile plot of a series by a subset period
#' @examples
#' 
#' \dontrun{
#' 
#' # Loading the UKgrid package to pull a multie seasonality data
#' require(UKgrid)
#' 
#' UKgrid_half_hour <- extract_grid(type = "xts", aggregate = NULL)
#' 
#' # Plotting the quantile of the UKgrid dataset
#' # No period subset
#' ts_quantile(UKgrid_half_hour, 
#' period = NULL, 
#' title = "The UK National Grid Net Demand for Electricity - Quantile Plot")
#'  
#' # Plotting the quantile of the UKgrid dataset
#' # Using a weekday subset
#' ts_quantile(UKgrid_half_hour, 
#' period = "weekdays",
#' title = "The UK National Grid Net Demand for Electricity - by Weekdays")
#' 
#' # Spacing the plots by setting the 
#' # number of rows of the plot to 2
#' ts_quantile(UKgrid_half_hour, 
#' period = "weekdays",
#' title = "The UK National Grid Net Demand for Electricity - by Weekdays",
#' n = 2)
#' }
ts_quantile <- function(ts.obj, upper = 0.75, lower = 0.25, period = NULL, n = 1, title = NULL, Xtitle = NULL, Ytitle = NULL){
  
  `%>%` <- magrittr::`%>%`
  
  freq <- quantiles <- palette <- obj.name <- NULL 
  category <- name <- maxcolors <- to <- data <- NULL
  obj.name <- base::deparse(base::substitute(ts.obj))
  
  # Error handling
  # Set the plot titles
  if(base::is.null(title)){
    title <- paste("Quantile Plot -", obj.name, sep = " ")
  } else if(!base::is.character(title)){
    warning("The 'title' object is not character object, using the default option")
    title <- paste("Quantile Plot -", obj.name, sep = " ")
  }
  
  if(!base::is.null(Xtitle)){
    if(!base::is.character(Xtitle)){
      warning("The value of the 'Xtitle' is not valid")
      Xtitle <- ""
    } 
  } else {
    Xtitle <- ""
  }
  
  if(!base::is.null(Ytitle)){
    if(!base::is.character(Ytitle)){
      warning("The value of the 'Ytitle' is not valid")
      Ytitle <- ""
    } 
  } else {
    Ytitle <- ""
  }
  
  # Quantile values
  if(!base::is.numeric(upper)){
    warning("The value of the 'upper' argument is invalid, using the default - 0.75")
    upper <- 0.75
  } else if(upper >1 | upper <= 0){
    warning("The value of the 'upper' argument is invalid, using the default - 0.75")
    upper <- 0.75
  }
  
  if(!base::is.numeric(lower)){
    warning("The value of the 'upper' argument is invalid, using the default - 0.25")
    lower <- 0.25
  } else if(lower >=1 | lower < 0){
    warning("The value of the 'lower' argument is invalid, using the default - 0.25")
    upper <- 0.25
  }
  
  if(lower >= upper){
    stop("The value of the 'lower' argument cannot be greater or equal than the 'upper' argument")
  }
  
  if(!base::is.numeric(n)){
    warning("The value of the 'n' argument is invalid (cannot use non numeric and intgeres values as input),",
            " using the default value - 1")
    n <- 1
  } else if(n%%1 != 0){
    warning("The value of the 'n' argument is invalid (cannot use non integer values as input),",
            " using the default value - 1")
    n <- 1
  }
  
  if(n != 1 & base::is.null(period)){
    warning("The value of the 'n' argument is invalid (cannot apply more than one row when period is set to NULL),", 
            " using the default value - 1")
    n <- 1
  }
  
  
  quantiles <- c(lower, upper)
  palette <- base::data.frame(name = row.names(RColorBrewer::brewer.pal.info),
                              RColorBrewer::brewer.pal.info, 
                              stringsAsFactors = FALSE) %>% 
    dplyr::filter(category == "seq") %>% 
    dplyr::select(name, n = maxcolors)
  
  palette <- palette[c(18, 1, 16, 3, 10, 17, 13, 8, 6, 2, 11, 5, 14, 12, 15, 9, 7, 4), ]
  
  
  if(xts::is.xts(ts.obj) || zoo::is.zoo(ts.obj)){
    df <- base::data.frame(date = zoo::index(ts.obj), 
                           data = base::as.numeric(ts.obj))
    if(xts::periodicity(ts.obj)$scale == "monthly"){
      freq <- "monthly"
      dtick <- 12
    } else if(xts::periodicity(ts.obj)$scale == "daily"){
      freq <- "daily"
      if(base::is.null(period)){
        
      }
    } else if(xts::periodicity(ts.obj)$scale == "hourly" && xts::periodicity(ts.obj)$frequency == 3600){
      freq <- "hourly"
    } else if(xts::periodicity(ts.obj)$scale == "minute" && xts::periodicity(ts.obj)$frequency == 30){
      freq <- "half-hour"
    } else{
      stop("The frequency of the input object is invalid, the function support only 'daily', 'hourly' or 'half-hour'")
    }
    
    # Case data frame input
  } else if(base::is.data.frame(ts.obj) | 
            dplyr::is.tbl(ts.obj) | 
            data.table::is.data.table(ts.obj)){
    
    ts.obj <- base::as.data.frame(ts.obj)
    col_class <- base::lapply(ts.obj, class)
    col_POSIXt <- base::lapply(ts.obj, lubridate::is.POSIXt)
    col_date <- base::lapply(ts.obj, lubridate::is.Date)
    numeric_col <- base::which(col_class == "numeric" | col_class == "integer")
    
    
    if(base::any(col_date == TRUE) & base::any(col_POSIXt == TRUE)){
      d <- t <- NULL
      d <- base::min(base::which(col_date == TRUE))
      t <- base::min(base::which(col_POSIXt == TRUE))
      if(d > t){
        warning("The data frame contains multiple date or time objects,",
                "using the first one as the series index")
        date_col <- t
      } else {
        warning("The data frame contains multiple date or time objects,",
                "using the first one as the plot index")
        date_col <- d
      }
    } else if(base::any(col_date == TRUE) | base::any(col_POSIXt == TRUE)){
      if(base::any(col_date == TRUE)){
        if(base::length(base::which(col_date == TRUE)) > 1){
          date_col <-  base::min(base::which(col_date == TRUE))
          warning("There are multipe 'date' objects in the data frame,",
                  "using the first one object as the plot index")
        } else {
          date_col <-  base::min(base::which(col_date == TRUE))
        }
      } else if(base::any(col_POSIXt == TRUE)){
        if(base::length(base::which(col_POSIXt == TRUE)) > 1){
          date_col <-  base::min(base::which(col_POSIXt == TRUE))
          warning("There are multipe 'POSIXt' objects in the data frame,",
                  "using the first one as the plot index")
        } else {
          date_col <-  base::min(base::which(col_POSIXt == TRUE))
        }
      } 
    }else {
      stop("No 'Date' or 'POSIXt' object available in the data frame,", 
           "please check if the data format defined properly")
    }
    
    # Identify the numeric/integer objects in the data frame  
    numeric_col <- base::which(col_class == "numeric" | col_class == "integer")
    # Stop if there is no any numeric values in the data frame, otherwise build the data frame 
    if(base::length(numeric_col) == 0){
      stop("None of the data frame columns is numeric,", 
           "please check if the data format is defined properly")
    }
    
    # Check if the object has multiple time series
    df <- NULL
    if(length(numeric_col) == 1){
      df<- base::data.frame(date = ts.obj[, date_col], data =  ts.obj[, numeric_col])
    } else {
      warning("The input object is a multiple time series object, by defualt will use only the first series as an input")
      df <- base::data.frame(date = ts.obj[, date_col], data = ts.obj[, numeric_col[1]])
    }
    
    date_diff <- NULL
    date_diff <- base::diff(base::as.numeric(df$date))
    
    if(base::min(date_diff) == base::max(date_diff) & base::mean(date_diff) == 1){
      # Daily
      freq <- "daily"
    } else if(base::min(date_diff) == base::max(date_diff) & base::mean(date_diff) == 3600){
      # Hourly
      freq <- "hourly"
    } else if(base::min(date_diff) == base::max(date_diff) & base::mean(date_diff) == 1800){
      # Hourly
      freq <- "half-hour"
    } else {
      stop("The frequency of the input object is invalid, the function support only 'daily', 'hourly' or 'half-hour'")
    }
    
    
  } else {
    stop("The input value is invalid, the function support only 'xts', 'zoo', 'data.frame', 'data.table' or 'tbl' objects")
  }
  
  if(!base::is.null(period)){
    if(freq == "daily" && period == "weekdays"){
      warning("The value of the period argument is invalid, cannot apply a 'weekdays' subset with daily frequency. Using the default value - NULL")
      period <- NULL
    }
  }
  
  
  
  
  if(freq == "quarterly"){
    df$to <- lubridate::quarter(df$date)
    df$to_num <- lubridate::quarter(df$date)
    dtick <- 1
  }else if(freq == "monthly"){
    df$to <- lubridate::month(df$date, label = TRUE)
    df$to_num <- lubridate::month(df$date)
    dtick <- 1
  } else if(freq == "daily"){
    df$to <- lubridate::wday(df$date, label = TRUE)
    df$to_num <- lubridate::wday(df$date)
    dtick <- 1
  } else if(freq == "hourly"){
    df$to <- lubridate::hour(df$date)
    df$to_num <- lubridate::hour(df$date)
    dtick <- 4
  } else if(freq == "half-hour"){
    df$to <- lubridate::hour(df$date) + lubridate::minute(df$date) / 60
    df$to_num <- lubridate::hour(df$date) + lubridate::minute(df$date) / 60
    dtick <- 4
  }
  
  if(base::is.null(period)){
    df$period <- "Total"
    df$period_num <- 1
    if(n != 1){
      warning("The value of the 'n' argument is invalid, setting it to 1")
      n <- 1
    }
    # dtick <- 12
  } else if(period == "weekdays"){
    df$period <- lubridate::wday(df$date, label = TRUE)
    df$period_num <- lubridate::wday(df$date)
    # dtick <- 7
  } else if(period == "monthly"){
    df$period <- lubridate::month(df$date, label = TRUE)
    df$period_num <- lubridate::month(df$date)
    # dtick <- 12
  } else if(period == "quarterly"){
    df$period <- base::factor(base::paste("Qr.", lubridate::quarter(df$date), sep = ""))
    df$period_num <- lubridate::quarter(df$date)
    # dtick <- 4
  } else if(period == "yearly"){
    df$period <- lubridate::year(df$date)
    df$period_num <- lubridate::year(df$date) - min(lubridate::year(df$date)) + 1
  }
  
  min_q <- max_q <- NULL
  
  plot <- base::lapply(unique(df$period), function(x){
    plot_range <- c(base::min(df$data), base::max(df$data))
    colors_set <- df1 <- p <- NULL
    df1 <- df %>% dplyr::filter(period == x) 
    
    
    m <- base::unique(df1$period_num) 
    
    df1 <- df1 %>% 
      dplyr::group_by(to) %>%
      dplyr::summarise(mean = base::mean(data, na.rm = TRUE),
                       median = stats::median(data, na.rm = TRUE),
                       upper = stats::quantile(data, probs = quantiles[2], na.rm = TRUE),
                       lower = stats::quantile(data, probs = quantiles[1], na.rm = TRUE))  
    
    
    min_q <- base::min(df1$lower)
    max_q <- base::max(df1$upper)
    
    
    colors_set <- RColorBrewer::brewer.pal(palette$n[m], palette$name[m])
    p <-  plotly::plot_ly(data = df1) %>%
      plotly::add_ribbons(data = df1,
                          x = ~ to,
                          ymin = ~ lower,
                          ymax = ~ upper,
                          line = list(color = colors_set[4]),
                          fillcolor = colors_set[3],
                          showlegend = F,
                          name = "Quantiles") %>%
      plotly::add_lines(x = ~ to, 
                        y = ~ median, 
                        line = list(color = colors_set[9]),
                        name = x) %>%
      plotly::layout(xaxis = list(dtick = dtick),
                     annotations = list(text = x, 
                                        showarrow = FALSE, 
                                        xref = "paper",
                                        yref = "paper",
                                        yanchor = "bottom",
                                        xanchor = "center",
                                        align = "center",
                                        x = 0.1,
                                        y = 0)
      )
    
    output <- base::list()
    output$plot <- p
    output$min <- min_q
    output$max <- max_q
    return(output)
    
  })
  
  min_q <- max_q <- NULL
  for(i in 1:base::length(plot)){
    if(i == 1){
      min_q <- plot[[i]]$min
      max_q <- plot[[i]]$max
    } else{
      if(min_q > plot[[i]]$min){
        min_q <- plot[[i]]$min
      }
      if(max_q < plot[[i]]$max){
        max_q <- plot[[i]]$max
      }
    }  
  }
  
  p <- NULL
  p <- base::lapply(1:base::length(plot), function(x){
    plot[[x]]$plot %>% plotly::layout(yaxis = list(range = c(min_q, max_q)))
  })
  
  output <- plotly::subplot(p, nrows = n, shareY = T, shareX = T, titleX = F, titleY = F) %>% 
    plotly::layout(title = title, xaxis = list(title = Xtitle), yaxis = list(title = Ytitle))
  
  return(output)
}

Try the TSstudio package in your browser

Any scripts or data that you put into this service are public.

TSstudio documentation built on Aug. 9, 2023, 9:06 a.m.