View source: R/dataSimulation.R
dataSimulation | R Documentation |
Estimate sum score,s score index values index and test information values bias and mean squared errors using simulated data.
dataSimulation(dataList, parmList, nsample = 1000)
dataList |
The list object set up by function |
parmList |
The list object containing objects computed by function
|
nsample |
The number of simulated samples. |
A named list object containing objects produced from analyzing the simulations, one set for each simulation:
sumscr: |
Sum score estimates |
index: |
Score index estimates |
mu: |
Expected sum score estimates |
info: |
Total arc length estimates |
index.pop: |
True or population score index values |
mu.pop: |
Expected sum score population values |
info.pop: |
Total test length population values |
n: |
Number of items |
nindex: |
Number of index values |
indfine: |
Fine mesh over score index range |
Qvec: |
Five marker percentages: 5, 25, 50, 75 and 95 |
Juan Li and James Ramsay
Ramsay, J. O., Li J. and Wiberg, M. (2020) Full information optimal scoring. Journal of Educational and Behavioral Statistics, 45, 297-315.
Ramsay, J. O., Li J. and Wiberg, M. (2020) Better rating scale scores with information-based psychometrics. Psych, 2, 347-360.
scorePerformance
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.