View source: R/dataSimulation.R
| dataSimulation | R Documentation | 
Estimate sum score,s score index values index and test information values bias and mean squared errors using simulated data.
  dataSimulation(dataList, parmList, nsample = 1000)
| dataList | The list object set up by function  | 
| parmList | The list object containing objects computed by function
 | 
| nsample | The number of simulated samples. | 
A named list object containing objects produced from analyzing the simulations, one set for each simulation:
| sumscr: | Sum score estimates | 
| index: | Score index estimates | 
| mu: | Expected sum score estimates | 
| info: | Total arc length estimates | 
| index.pop: | True or population score index values | 
| mu.pop: | Expected sum score population values | 
| info.pop: | Total test length population values | 
| n: | Number of items | 
| nindex: | Number of index values | 
| indfine: | Fine mesh over score index range | 
| Qvec: | Five marker percentages: 5, 25, 50, 75 and 95 | 
Juan Li and James Ramsay
Ramsay, J. O., Li J. and Wiberg, M. (2020) Full information optimal scoring. Journal of Educational and Behavioral Statistics, 45, 297-315.
Ramsay, J. O., Li J. and Wiberg, M. (2020) Better rating scale scores with information-based psychometrics. Psych, 2, 347-360.
scorePerformance
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.