Nothing
GC.IDX <- function(x, cmax, cmin = 2, indexlist = "all", method = 'FCM', fzm = 2,
iter = 100, nstart = 20){
if(missing(x))
stop("Missing input argument. A numeric data frame or matrix is required")
if(missing(cmax))
stop("Missing input argument. A maximum number of clusters is required")
if(!is.numeric(cmax))
stop("Argument 'cmax' must be numeric")
if(cmax > nrow(x))
stop("The maximum number of clusters for consideration should be less than or equal to the number of data points in dataset.")
if(!is.numeric(cmin))
stop("Argument 'cmin' must be numeric")
if(cmin <=1)
warning("The minimum number of clusters for consideration should be more than 1",immediate. = TRUE)
if(!any(indexlist %in% c("all", "GC1", "GC2", "GC3", "GC4")))
stop("Argument 'indexlist' is not in 'all', 'GC1', 'GC2', 'GC3', 'GC4'")
if(!any(method == c("FCM","EM")))
stop("Argument 'method' should be one of 'FCM','EM' ")
if(method == "FCM"){
if(fzm <= 1)
stop("Argument 'fcm' should be the number greater than 1",call. = FALSE)
if(!is.numeric(nstart))
stop("Argument 'nstart' must be numeric")
if(!is.numeric(iter))
stop("Argument 'iter' must be numeric")
}
# Defined vector
gc1 = vector()
gc2 = vector()
gc3 = vector()
gc4 = vector()
distance =dist(x,diag = TRUE,upper= TRUE)
dd = as.matrix(distance)
dd[lower.tri(dd)] = 0
diag(dd) = 0
# For checking IDX
Check_GC1 = sum(indexlist %in% c("all","GC1"))>=1
Check_GC2 = sum(indexlist %in% c("all","GC2"))>=1
Check_GC3 = sum(indexlist %in% c("all","GC3"))>=1
Check_GC4 = sum(indexlist %in% c("all","GC4"))>=1
# Start k loop
for(k in cmin:cmax){
if(method == "EM"){ # EM Algorithm
EM.model <- Mclust(x,G=k,verbose=FALSE)
assign("m",EM.model$z)
assign("c",t(EM.model$parameters$mean))
}else if(method == "FCM"){ # FCM Algorithm
wd = Inf
# cm.out = list()
for (nr in 1:nstart){
FCM.model = cmeans(x,k,iter,verbose=FALSE,method="cmeans",m=fzm)
if (FCM.model$withinerror < wd){
wd = FCM.model$withinerror
FCM.model2 =FCM.model
}
}
assign("m",FCM.model2$membership)
assign("c",FCM.model2$centers)
}
# Defined variable
n = nrow(x)
mt = t(m)
NI = colSums(m)
nws = floor(sum(NI*(NI-1)/2))
# GC1: sum product
if(Check_GC1){
PD1 = m%*%mt
G1 = sum(PD1*dd)
Gmax1 = sum(sort(dd,decreasing = T)[1:nws]*sort(PD1[lower.tri(PD1)],decreasing = T)[1:nws])
Gmin1 = sum(sort(dd,decreasing = T)[1:nws]*sort(PD1[lower.tri(PD1)],decreasing = F)[1:nws])
gc1[k-cmin+1] = (G1-Gmin1)/(Gmax1-Gmin1)
}
if(sum(indexlist %in% c("all","GC2","GC3","GC4"))>=1){
PD2 = matrix(rep(0,n^2),n,n)
PD3 = matrix(rep(0,n^2),n,n)
PD4 = matrix(rep(0,n^2),n,n)
for (s in 1:n){
#GC2: sum-min
if(Check_GC2){
PD2[s,] = colSums(pmin(mt,m[s,]))
}
# GC3: max-product
if(Check_GC3){
PD3[s,] = apply(m[s,]*mt,2,max)
}
# GC4: max-min
if(Check_GC4){
PD4[s,] = apply(pmin(mt,m[s,]),2,max)
}
} # end loop s
if(Check_GC2){
G2 = sum(PD2*dd)
Gmax2 = sum(sort(dd,decreasing = T)[1:nws]*sort(PD2[lower.tri(PD2)],decreasing = T)[1:nws])
Gmin2 = sum(sort(dd,decreasing = T)[1:nws]*sort(PD2[lower.tri(PD2)],decreasing = F)[1:nws])
gc2[k-cmin+1] = (G2-Gmin2)/(Gmax2-Gmin2)
}
if(Check_GC3){
G3 = sum(PD3*dd)
Gmax3 = sum(sort(dd,decreasing = T)[1:nws]*sort(PD3[lower.tri(PD3)],decreasing = T)[1:nws])
Gmin3 = sum(sort(dd,decreasing = T)[1:nws]*sort(PD3[lower.tri(PD3)],decreasing = F)[1:nws])
gc3[k-cmin+1] = (G3-Gmin3)/(Gmax3-Gmin3)
}
if(Check_GC4){
G4 = sum(PD4*dd)
Gmax4 = sum(sort(dd,decreasing = T)[1:nws]*sort(PD4[lower.tri(PD4)],decreasing = T)[1:nws])
Gmin4 = sum(sort(dd,decreasing = T)[1:nws]*sort(PD4[lower.tri(PD4)],decreasing = F)[1:nws])
gc4[k-cmin+1] = (G4-Gmin4)/(Gmax4-Gmin4)
}
}# END GC index
}#end k loop
# Create data frame for IDX result
GC1 = data.frame(cbind("c"=cmin:cmax,"GC1"=gc1))
GC2 = data.frame(cbind("c"=cmin:cmax,"GC2"=gc2))
GC3 = data.frame(cbind("c"=cmin:cmax,"GC3"=gc3))
GC4 = data.frame(cbind("c"=cmin:cmax,"GC4"=gc4))
GC.list = list("GC1"= GC1,"GC2"= GC2,"GC3"= GC3,"GC4"= GC4)
if (sum(indexlist == "all")==1){
return(GC.list)
} else {
return(GC.list[indexlist])
}
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.