Nothing
PB.IDX <- function(x, kmax, kmin=2,
method = 'kmeans',
corr = 'pearson',
nstart = 100){
if(missing(x))
stop("Missing input argument. A numeric data frame or matrix is required")
if(missing(kmax))
stop("Missing input argument. A maximum number of clusters is required")
if(!is.numeric(kmax))
stop("Argument 'kmax' must be numeric")
if(kmax > nrow(x))
stop("The maximum number of clusters for consideration should be less than or equal to the number of data points in dataset.")
if(!is.numeric(kmin))
stop("Argument 'kmin' must be numeric")
if(kmin <=1)
warning("The minimum number of clusters for consideration should be more than 1",immediate. = TRUE)
if(!any(method == c("kmeans","hclust_complete","hclust_average","hclust_single")))
stop("Argument 'method' should be one of 'kmeans', 'hclust_complete', 'hclust_average', 'hclust_single'")
if(method == "kmeans"){
if(!is.numeric(nstart))
stop("Argument 'nstart' must be numeric")
}
if(!any(corr == c("pearson","kendall","spearman")))
stop("Argument 'corr' should be one of 'pearson', 'kendall', 'spearman'")
if(startsWith(method,"hclust_")){
H.model = hclust(dist(x),method = sub("hclust_", "", method))
}
d = as.vector(dist(x))
dm = dim(x)
pb = vector()
for(k in kmin:kmax){
xnew = matrix(0,dm[1],dm[2])
centroid = matrix(0,k,dm[2])
if(method == "kmeans"){
K.model = kmeans(x,k,nstart =nstart)
cluss = K.model$cluster
centroid = K.model$centers
xnew = centroid[cluss,]
} else if(startsWith(method,"hclust_")){
cluss = cutree(H.model,k)
for (j in 1:k){
if (is.null(nrow(x[cluss==j,])) | sum(nrow(x[cluss==j,]))==1){
centroid[j,] = as.numeric(x[cluss==j,])
} else {
centroid[j,] = colMeans(x[cluss==j,])
}
}
xnew = centroid[cluss,]
} # End check algorithm
if(!all(seq(k) %in% unique(cluss)))
warning("Some clusters are empty.")
d3 = as.vector(dist(xnew))
d3[d3>0] = 1
pb[k-kmin+1] = cor(d,d3,method=corr)
}
PB.data = data.frame(cbind("k"=kmin:kmax,"PB"=pb))
return(PB.data)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.