Posnegbin | R Documentation |
Density, distribution function, quantile function and random generation for the positive-negative binomial distribution.
dposnegbin(x, size, prob = NULL, munb = NULL, log = FALSE)
pposnegbin(q, size, prob = NULL, munb = NULL,
lower.tail = TRUE, log.p = FALSE)
qposnegbin(p, size, prob = NULL, munb = NULL)
rposnegbin(n, size, prob = NULL, munb = NULL)
x , q |
vector of quantiles. |
p |
vector of probabilities. |
n |
number of observations.
Fed into |
size , prob , munb , log |
Same arguments as that of an ordinary negative binomial
distribution
(see Short vectors are recycled.
The parameter Note that |
log.p , lower.tail |
Same arguments as that of an ordinary negative binomial
distribution (see |
The positive-negative binomial distribution is a negative binomial distribution but with the probability of a zero being zero. The other probabilities are scaled to add to unity. The mean therefore is
\mu / (1-p(0))
where \mu
the mean of an ordinary negative binomial
distribution.
dposnegbin
gives the density,
pposnegbin
gives the distribution function,
qposnegbin
gives the quantile function, and
rposnegbin
generates n
random deviates.
These functions are or are likely to be deprecated.
Use Gaitdnbinom
instead.
T. W. Yee
Welsh, A. H., Cunningham, R. B., Donnelly, C. F. and Lindenmayer, D. B. (1996). Modelling the abundances of rare species: statistical models for counts with extra zeros. Ecological Modelling, 88, 297–308.
Gaitdnbinom
,
posnegbinomial
,
zanegbinomial
,
zinegbinomial
,
rnbinom
.
munb <- 5; size <- 4; n <- 1000
table(y <- rposnegbin(n, munb = munb, size = size))
mean(y) # Sample mean
munb / (1 - (size / (size + munb))^size) # Population mean
munb / pnbinom(0, mu = munb, size, lower.tail = FALSE) # Same
x <- (-1):17
(ii <- dposnegbin(x, munb = munb, size = size))
max(abs(cumsum(ii) - pposnegbin(x, munb = munb, size))) # 0?
## Not run: x <- 0:10
barplot(rbind(dposnegbin(x, munb = munb, size = size),
dnbinom(x, mu = munb, size = size)),
beside = TRUE, col = c("blue","green"),
main = paste0("dposnegbin(munb = ", munb, ", size = ", size,
") (blue) vs dnbinom(mu = ", munb,
", size = ", size, ") (green)"),
names.arg = as.character(x))
## End(Not run)
# Another test for pposnegbin()
nn <- 5000
mytab <- cumsum(table(rposnegbin(nn, munb = munb, size))) / nn
myans <- pposnegbin(sort(as.numeric(names(mytab))), munb = munb, size)
max(abs(mytab - myans)) # Should be 0
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.