| Pospois | R Documentation |
Density, distribution function, quantile function and random generation for the positive-Poisson distribution.
dpospois(x, lambda, log = FALSE)
ppospois(q, lambda)
qpospois(p, lambda)
rpospois(n, lambda)
x, q |
vector of quantiles. |
p |
vector of probabilities. |
n |
number of observations.
Fed into |
lambda |
vector of positive means (of an ordinary Poisson distribution). Short vectors are recycled. |
log |
logical. |
The positive-Poisson distribution is a Poisson distribution but with the probability of a zero being zero. The other probabilities are scaled to add to unity. The mean therefore is
\lambda / (1-\exp(-\lambda)).
As \lambda increases, the positive-Poisson and Poisson
distributions become more similar.
Unlike similar functions for the Poisson distribution, a zero value
of lambda returns a NaN.
dpospois gives the density,
ppospois gives the distribution function,
qpospois gives the quantile function, and
rpospois generates random deviates.
These functions are or are likely to be deprecated.
Use Gaitdpois instead.
The family function pospoisson estimates
\lambda by maximum likelihood estimation.
T. W. Yee
Gaitdpois,
pospoisson,
zapoisson,
zipoisson,
rpois.
lambda <- 2; y = rpospois(n = 1000, lambda)
table(y)
mean(y) # Sample mean
lambda / (1 - exp(-lambda)) # Population mean
(ii <- dpospois(0:7, lambda))
cumsum(ii) - ppospois(0:7, lambda) # Should be 0s
table(rpospois(100, lambda))
table(qpospois(runif(1000), lambda))
round(dpospois(1:10, lambda) * 1000) # Should be similar
## Not run: x <- 0:7
barplot(rbind(dpospois(x, lambda), dpois(x, lambda)),
beside = TRUE, col = c("blue", "orange"),
main = paste("Positive Poisson(", lambda, ") (blue) vs",
" Poisson(", lambda, ") (orange)", sep = ""),
names.arg = as.character(x), las = 1, lwd = 2)
## End(Not run)
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.