Nothing
#' @title Fit linear models to spectral peaks extracted from the wavelet spectra to astronomical cycles multiplied by sedimentation rate x
#'
#' @description The \code{\link{flmw}} function is used calculate the linear correlation
#' for a list of astronomical cycles transformed using a range of sedimentation rates and then compared
#' to spectral peaks of a wavelet spectra
#'
#'@param wavelet Wavelet object created using the \code{\link{analyze_wavelet}} function
#'@param sedrate_low Minimum sedimentation rate (cm/kyr)for which the sum of maximum spectral power is calculated for.
#'@param sedrate_high Maximum sedimentation rate (cm/kyr) for which the sum of maximum spectral power is calculated for.
#'@param spacing Spacing (cm/kyr) between sedimentation rates
#'@param cycles Astronomical cycles (in kyr) for which the combined sum of maximum spectral power is calculated for
#'@param x_lab label for the y-axis \code{Default="depth"}
#'@param y_lab label for the y-axis \code{Default="sedrate"}
#'@param run_random run multiple simulation to calculate percentile against the 0 hypothesis
#'@param rand_simulations nr of simulations to calculate percentile against the 0 hypothesis
#'@param run_multicore run simulation using multiple cores \code{Default=FALSE}
#'the simulation is run at x-2 cores to allow the 2 remaining processes to run background processes
#'@param genplot Generate plot \code{Default="FALSE"}
#'@param palette_name Name of the color palette which is used for plotting.
#'The color palettes than can be chosen depends on which the R package is specified in
#'the color_brewer parameter. The included R packages from which palettes can be chosen
#'from are; the 'RColorBrewer', 'grDevices', 'ColorRamps' and 'Viridis' R packages.
#'There are many options to choose from so please
#'read the documentation of these packages \code{Default=rainbow}.
#'The R package 'viridis' has the color palette options: “magma”, “plasma”,
#'“inferno”, “viridis”, “mako”, and “rocket” and “turbo”
#'To see the color palette options of the The R pacakge 'RColorBrewer' run
#'the RColorBrewer::brewer.pal.info() function
#'The R package 'colorRamps' has the color palette options:"blue2green",
#'"blue2green2red", "blue2red", "blue2yellow", "colorRamps", "cyan2yellow",
#'"green2red", "magenta2green", "matlab.like", "matlab.like2" and "ygobb"
#'The R package 'grDevices' has the built in palette options:"rainbow",
#'"heat.colors", "terrain.colors","topo.colors" and "cm.colors"
#'To see even more color palette options of the The R pacakge 'grDevices' run
#'the grDevices::hcl.pals() function
#'@param color_brewer Name of the R package from which the color palette is chosen from.
#'The included R packages from which palettes can be chosen
#'are; the RColorBrewer, grDevices, ColorRamps and Viridis R packages.
#'There are many options to choose from so please
#'read the documentation of these packages. "\code{Default=grDevices}
#'@param plot_res options 1-8 option 1: slope coefficient, option 2: r squared,
#'option 3: nr of components, option 4: difference to the origin , option 5: slope coefficient percentile
#'option 6: r squared percentile, option 7: nr of components percentile,
#'option 8: difference to the origin percentile \code{Default=2}
#'@param keep_editable Keep option to add extra features after plotting \code{Default=FALSE}
#' @param verbose Print text \code{Default=FALSE}.
#'
#' @author
#'Based on the \link[astrochron]{eAsm} function of the 'astrochron' R package and the 'eCOCO' and 'COCO' function of the 'Acycle' software
#'
#'@references
#'Routines for astrochronologic testing, astronomical time scale construction, and
#'time series analysis <doi:10.1016/j.earscirev.2018.11.015>
#'
#'Acycle: Time-series analysis software for paleoclimate research and education,
#'Mingsong Li, Linda Hinnov, Lee Kump,
#'Computers & Geosciences,Volume 127,2019,Pages 12-22,ISSN 0098-3004,
#'<doi:10.1016/j.cageo.2019.02.011>
#'
#'Tracking variable sedimentation rates and astronomical forcing in Phanerozoic paleoclimate proxy series with evolutionary correlation coefficients and hypothesis testing,
#'Mingsong Li, Lee R. Kump, Linda A. Hinnov, Michael E. Mann,
#'Earth and Planetary Science Letters,Volume 501,
#'T2018,Pages 165-179,ISSN 0012-821X,<doi:10.1016/j.epsl.2018.08.041>
#'
#'@examples
#'\donttest{
#'#estimate sedimentation rate for the magnetic susceptibility record
#'# of the Sullivan core of Pas et al., (2018).
#'
#'mag_wt <- analyze_wavelet(data = mag,
#' dj = 1/100,
#' lowerPeriod = 0.1,
#' upperPeriod = 254,
#' verbose = FALSE,
#' omega_nr = 10)
#'
#'sedrates <- flmw(wavelet = mag_wt,
#' sedrate_low = 0.5,
#' sedrate_high = 4,
#' spacing = 0.05,
#' cycles = c(2376,1600,1180,696,406,110),
#' x_lab = "depth",
#' y_lab = "sedrate",
#' run_random = FALSE,
#' rand_simulations = 50, # increase to get better constrainted resutls
#' run_multicore = FALSE,
#' genplot = FALSE,
#' palette_name = "rainbow",
#' color_brewer = "grDevices",
#' plot_res = 2,
#' keep_editable=FALSE,
#' verbose=FALSE)
#'}
#'
#' @return
#'Returns a list which contains 10 elements
#'element 1: slope coefficient
#'element 2: r squared
#'element 3: nr of components
#'element 4: difference to the origin
#'element 5: slope coefficient percentile
#'element 6: r squared percentile
#'element 7: nr of components percentile,
#'element 8: difference to the origin percentile
#'element 9: y-axis values of the matrices which is sedimentation rate
#'element 10: x-axis values of the matrices which is depth
#'
#' @export
#' @importFrom matrixStats rowSds
#' @importFrom Matrix rowMeans
#' @importFrom stats qnorm
#' @importFrom stats quantile
#' @importFrom parallel detectCores
#' @importFrom parallel makeCluster
#' @importFrom doSNOW registerDoSNOW
#' @importFrom utils txtProgressBar
#' @importFrom utils setTxtProgressBar
#' @importFrom tcltk setTkProgressBar
#' @importFrom tcltk setTkProgressBar
#' @importFrom foreach foreach
#' @importFrom stats runif
#' @importFrom stats sd
#' @importFrom stats lm
#' @importFrom stats ecdf
#' @importFrom graphics par
#' @importFrom graphics image
#' @importFrom graphics axis
#' @importFrom graphics mtext
#' @importFrom graphics text
#' @importFrom graphics box
#' @importFrom graphics polygon
#' @importFrom grDevices rgb
#' @importFrom foreach %dopar%
#' @importFrom graphics layout
#' @importFrom parallel stopCluster
#' @importFrom truncnorm rtruncnorm
#' @importFrom astrochron asm
#' @importFrom astrochron eAsm
#' @importFrom RColorBrewer brewer.pal.info
#' @importFrom RColorBrewer brewer.pal
#' @importFrom grDevices colorRampPalette
#' @importFrom colorRamps blue2green
#' @importFrom colorRamps blue2green2red
#' @importFrom colorRamps blue2red
#' @importFrom colorRamps blue2yellow
#' @importFrom colorRamps cyan2yellow
#' @importFrom colorRamps green2red
#' @importFrom colorRamps magenta2green
#' @importFrom colorRamps matlab.like
#' @importFrom colorRamps matlab.like2
#' @importFrom colorRamps ygobb
#' @importFrom viridis viridis
#' @importFrom viridis magma
#' @importFrom viridis plasma
#' @importFrom viridis inferno
#' @importFrom viridis cividis
#' @importFrom viridis mako
#' @importFrom viridis rocket
#' @importFrom viridis turbo
#' @importFrom grDevices rainbow
#' @importFrom grDevices heat.colors
#' @importFrom grDevices terrain.colors
#' @importFrom grDevices topo.colors
#' @importFrom grDevices cm.colors
#' @importFrom grDevices hcl.colors
flmw <- function(wavelet = NULL,
sedrate_low = NULL,
sedrate_high = NULL,
spacing = NULL,
cycles = c(NULL),
x_lab = "depth",
y_lab = "sedrate",
run_random = FALSE,
rand_simulations = 1000,
run_multicore = FALSE,
genplot = FALSE,
palette_name = "rainbow",
color_brewer = "grDevices",
plot_res = 2,
keep_editable = FALSE,
verbose=FALSE) {
my.data <- cbind(wavelet$x, wavelet$y)
my.w <- wavelet
Power <- matrix(unlist(as.data.frame(my.w$Power)))
Power <-
as.data.frame(matrix(
unlist(as.data.frame(my.w$Power)),
ncol = my.w$nc,
nrow = my.w$nr
))
Power <- t(Power)
Powert <- t(Power)
testsedrates <-
seq(from = sedrate_low, to = sedrate_high, by = spacing)
testsedrates <- as.data.frame(testsedrates)
if (run_multicore == TRUE) {
numCores <- detectCores()
cl <- parallel::makeCluster(numCores - 2)
registerDoSNOW(cl)
} else{
numCores <- 1
cl <- makeCluster(numCores)
registerDoSNOW(cl)
}
simulations <- ncol(Powert)
if (verbose==TRUE){
pb <- txtProgressBar(max = simulations, style = 3)
progress <- function(n)
setTxtProgressBar(pb, n)
opts <- list(progress = progress)}else{opts=NULL}
ijk <- 1 # needed to assign 1 to ijk to avoid note
if (run_random == TRUE) {
#generate random simulation shifts
randomize_mat <-
matrix(
data = truncnorm::rtruncnorm(
n = (nrow(Powert) / 2) * rand_simulations,
a = 1 / 10,
b = 10,
mean = 1,
sd = 1
),
ncol = rand_simulations
)
}
fit <-
foreach (ijk = 1:simulations, .options.snow = opts) %dopar% {
fits <- matrix(data = NA,
nrow = nrow(testsedrates),
ncol = 8)
slope_coeff_random_mat <-
matrix(data = NA,
nrow = nrow(testsedrates),
ncol = rand_simulations)
corr_coeff_random_mat <-
matrix(data = NA,
nrow = nrow(testsedrates),
ncol = rand_simulations)
nr_compenents_random_mat <-
matrix(data = NA,
nrow = nrow(testsedrates),
ncol = rand_simulations)
slope_orig_random_mat <-
matrix(data = NA,
nrow = nrow(testsedrates),
ncol = rand_simulations)
nearest_cycle <-
as.data.frame(matrix(
data = NA,
nrow = length(cycles),
ncol = 3
))
data <- as.data.frame(cbind(my.w$Period, Powert[, ijk]))
astro_mindetect <- as.data.frame(data)
astro_mindetect$min <- 0
for (i in 3:(nrow(data) - 2)) {
if ((data[i, 2] - data[(i + 2), 2] < 0) &
(data[i, 2] - data[(i - 2), 2] < 0))
{
astro_mindetect[i, 3] <- 1
}
}
astro_mindetect_error_corr <- astro_mindetect
astro_mindetect_error_corr <-
astro_mindetect_error_corr[astro_mindetect_error_corr$min == 1 ,]
astro_maxdetect <- as.data.frame(data)
astro_maxdetect$max <- 0
for (i in 3:(nrow(data) - 2)) {
if ((data[i, 2] - data[(i + 2), 2] > 0) &
(data[i, 2] - data[(i - 2), 2] > 0))
{
astro_maxdetect[i, 3] <- 1
}
}
astro_maxdetect_error_corr <- astro_maxdetect
astro_maxdetect_error_corr <-
astro_maxdetect_error_corr[astro_maxdetect_error_corr$max == 1 ,]
max <- astro_maxdetect_error_corr
colnames(max) <- c("A", "B", "C")
min <- astro_mindetect_error_corr
colnames(min) <- c("A", "B", "C")
min[, 3] <- -1
peaks <- rbind(max, min)
peaks <- peaks[order(peaks[, 1]), ]
i <- 1
res_rownr <- nrow(peaks)
while (i < res_rownr) {
if (peaks[i, 3] == peaks[(i + 1), 3]) {
if ((peaks[i, 3] == 1 & peaks[(i + 1), 3] == 1) &
(peaks[i, 2] > peaks[(i + 1), 2])) {
peaks[(i + 1), ] <- NA
peaks <- na.omit(peaks)
res_rownr <- res_rownr - 1
}
if ((peaks[i, 3] == 1 & peaks[(i + 1), 3] == 1) &
(peaks[i, 2] < peaks[(i + 1), 2])) {
peaks[i, ] <- NA
peaks <- na.omit(peaks)
res_rownr <- res_rownr - 1
}
if ((peaks[i, 3] == -1 & peaks[(i + 1), 3] == -1) &
(peaks[i, 2] < peaks[(i + 1), 2])) {
peaks[(i + 1), ] <- NA
peaks <- na.omit(peaks)
res_rownr <- res_rownr - 1
}
if ((peaks[i, 3] == -1 & peaks[(i + 1), 3] == -1) &
(peaks[i, 2] > peaks[(i + 1), 2])) {
peaks[i, ] <- NA
peaks <- na.omit(peaks)
res_rownr <- res_rownr - 1
}
}
if ((peaks[i, 3] != peaks[(i + 1), 3]) |
is.na(peaks[i, 3] != peaks[(i + 1), 3])) {
i <- i + 1
}
}
peaks <- peaks[peaks[, 3] > 0, c(1, 2)]
for (ij in 1:nrow(testsedrates)) {
cycles_in_depth <- ((cycles * testsedrates[ij, ]) / 100)
nearest_cycle[, 1] <- cycles_in_depth
for (jj in 1:length(cycles)) {
row_nr <-
DescTools::Closest(peaks[, 1], cycles_in_depth[jj], which = TRUE)
nearest_cycle[jj, 2] <- peaks[row_nr[1], 1]
}
nearest_cycle[, 3] <-
sqrt((nearest_cycle[, 2] - nearest_cycle[, 1]) ^ 2)
nearest_cycle <-
nearest_cycle[order(-nearest_cycle[, 2], -nearest_cycle[, 3]),]
sel_cycles <-
nearest_cycle[!duplicated(nearest_cycle[, 2], fromLast = TRUE),]
if (nrow(sel_cycles) <= 1) {
fits[ij, 1] <- 0
fits[ij, 2] <- 0
fits[ij, 3] <- nrow(sel_cycles)
fits[ij, 4] <- 0
} else{
lmodel <- summary(lm(sel_cycles[, 1] ~ sel_cycles[, 2]))
fits[ij, 1] <- sqrt((1 - lmodel$coefficients[2, 1]) ^ 2)
fits[ij, 2] <- lmodel$r.squared
fits[ij, 3] <- nrow(sel_cycles)
fits[ij, 4] <- 1 - sqrt((lmodel$coefficients[1, 1] ^ 2))
}
}
if (run_random == TRUE) {
for (rt in 1:rand_simulations) {
random_peaks <-
sort(peaks[, 1] * (randomize_mat[1:nrow(peaks), rt]))
for (ij in 1:nrow(testsedrates)) {
cycles_in_depth <- ((cycles * testsedrates[ij, ]) / 100)
nearest_cycle[, 1] <- cycles_in_depth
for (pl in 1:length(cycles)) {
row_nr <-
DescTools::Closest(random_peaks[], cycles_in_depth[pl], which = TRUE)
nearest_cycle[pl, 2] <- random_peaks[row_nr[1]]
}
nearest_cycle[, 3] <-
sqrt((nearest_cycle[, 2] - nearest_cycle[, 1]) ^ 2)
nearest_cycle <-
nearest_cycle[order(-nearest_cycle[, 2],-nearest_cycle[, 3]),]
sel_cycles <-
nearest_cycle[!duplicated(nearest_cycle[, 2], fromLast = TRUE),]
if (nrow(sel_cycles) <= 1) {
slope_coeff_random_mat[ij, rt] <- 0
corr_coeff_random_mat[ij, rt] <- 0
nr_compenents_random_mat[ij, rt] <- nrow(sel_cycles)
slope_orig_random_mat[ij, rt] <- 0
} else{
lmodel_random <- summary(lm(sel_cycles[, 1] ~ sel_cycles[, 2]))
slope_coeff_random_mat[ij, rt] <-
sqrt((1 - lmodel_random$coefficients[2, 1]) ^ 2)
corr_coeff_random_mat[ij, rt] <-
lmodel_random$r.squared
nr_compenents_random_mat[ij, rt] <- nrow(sel_cycles)
slope_orig_random_mat[ij, rt] <-
1 - sqrt((lmodel_random$coefficients[1, 1] ^ 2))
}
}
}
for (yu in 1:nrow(testsedrates)) {
slope_coeff_random_per <- ecdf(slope_coeff_random_mat[yu, ])
corr_coeff_random_per <- ecdf(corr_coeff_random_mat[yu, ])
nr_compenents_random_per <-
ecdf(nr_compenents_random_mat[yu, ])
slope_orig_random_per <- ecdf(slope_orig_random_mat[yu, ])
fits[yu, 5] <- 1 - slope_coeff_random_per(fits[yu, 1])
fits[yu, 6] <- corr_coeff_random_per(fits[yu, 2])
fits[yu, 7] <- nr_compenents_random_per(fits[yu, 3])
fits[yu, 8] <- slope_orig_random_per(fits[yu, 4])
}
}
fits <- fits
}
stopCluster(cl)
fit2 <- fit
slope_coeff_mat <-
matrix(
data = NA,
ncol = length(my.w$x),
nrow = nrow(testsedrates)
)
corr_coeff_mat <-
matrix(
data = NA,
ncol = length(my.w$x),
nrow = nrow(testsedrates)
)
nr_compenents_mat <-
matrix(
data = NA,
ncol = length(my.w$x),
nrow = nrow(testsedrates)
)
orig_mat <-
matrix(
data = NA,
ncol = length(my.w$x),
nrow = nrow(testsedrates)
)
slope_coeff_mat_per <-
matrix(
data = NA,
ncol = length(my.w$x),
nrow = nrow(testsedrates)
)
corr_coeff_mat_per <-
matrix(
data = NA,
ncol = length(my.w$x),
nrow = nrow(testsedrates)
)
nr_compenents_mat_per <-
matrix(
data = NA,
ncol = length(my.w$x),
nrow = nrow(testsedrates)
)
orig_mat_per <-
matrix(
data = NA,
ncol = length(my.w$x),
nrow = nrow(testsedrates)
)
for (kk in 1:length(fit2)) {
extract <- as.data.frame(fit2[[kk]])
slope_coeff_mat[, kk] <- extract[, 1]
corr_coeff_mat[, kk] <- extract[, 2]
nr_compenents_mat[, kk] <- extract[, 3]
orig_mat[, kk] <- extract[, 4]
slope_coeff_mat_per[, kk] <- extract[, 5]
corr_coeff_mat_per[, kk] <- extract[, 6]
nr_compenents_mat_per[, kk] <- extract[, 7]
orig_mat_per[, kk] <- extract[, 8]
}
depth <- (my.data[, 1])
y_axis <- unlist(testsedrates)
results <- list(
slope_coeff_mat = slope_coeff_mat,
corr_coeff_mat = corr_coeff_mat,
nr_compenents_mat = nr_compenents_mat,
orig_mat = orig_mat,
slope_coeff_mat_per = slope_coeff_mat_per,
corr_coeff_mat_per = corr_coeff_mat_per,
nr_compenents_mat_per = nr_compenents_mat_per,
orig_mat_per = orig_mat_per,
depth = my.data[, 1],
y_axis = as.numeric(unlist(testsedrates))
)
if (genplot == TRUE) {
if (keep_editable == FALSE) {
oldpar <- par(no.readonly = TRUE)
on.exit(par(oldpar))
}
dev.new(width = 14, height = 7)
layout.matrix <- matrix(c(1, 2, 3), nrow = 1, ncol = 3)
layout(
mat = layout.matrix,
heights = c(1, 1, 1),
# Heights of the two rows
widths = c(8, 2, 2)
)
par(mar = c(4, 4, 2, 4))
pmax_avg <- t(as.matrix(results[[plot_res]]))
n.levels = 100
power_max_mat.levels = quantile(pmax_avg, probs = seq(
from = 0,
to = 1,
length.out = n.levels + 1
))
image.plt = par()$plt
if (color_brewer== "RColorBrewer"){
key.cols <- rev(colorRampPalette(brewer.pal(brewer.pal.info[palette_name,1],palette_name))(n.levels))
}
if (color_brewer== "colorRamps"){
color_brewer_Sel <- paste("colorRamps::",palette_name,"(n=n.levels)")
key.cols = eval(parse(text = color_brewer_Sel))
}
if (color_brewer == "grDevices"){
if (palette_name == "rainbow"){
color_brewer_Sel <- "grDevices::rainbow(n=n.levels, start = 0, end = 0.7)"
key.cols <- rev(eval(parse(text = color_brewer_Sel)))
}
else if (palette_name == "heat.colors"|
palette_name == "terrain.colors"|
palette_name == "topo.colors"|
palette_name == "cm.colors"){
color_brewer_Sel <- paste("grDevices::",palette_name,"(n=n.levels, start = 0, end = 1)")
key.cols <- rev(eval(parse(text = color_brewer_Sel)))
}
else{key.cols <- hcl.colors(n=n.levels, palette = palette_name, alpha = NULL, rev = FALSE, fixup = TRUE)}}
if (color_brewer== "viridis"){
color_brewer_Sel <- paste("viridis::",palette_name,"(n=n.levels,direction = -1)")
key.cols = rev(eval(parse(text = color_brewer_Sel)))
}
depth <- (my.data[, 1])
y_axis <- unlist(testsedrates)
depth <- as.numeric(depth)
y_axis <- as.numeric(y_axis)
image(
x = depth,
y = y_axis,
z = (pmax_avg),
col = key.cols,
breaks = power_max_mat.levels,
xlab = x_lab,
ylab = y_lab,
useRaster = TRUE
)
r_sum <- colMeans(pmax_avg)
plot(
y = y_axis,
x = r_sum,
type = "l",
ylim = c(min(y_axis), max(y_axis)),
yaxs = "i",
xlab = "normalized power",
ylab = y_lab
)
lwd.axis = 1
n.ticks = 6
label.digits = 6
label.format = "f"
width = 1.2
lab.line = 2.5
lab = NULL
key.marks = round(seq(
from = 0,
to = 1,
length.out = n.ticks
) *
n.levels)
key.labels = formatC(as.numeric(power_max_mat.levels),
digits = label.digits,
format = label.format)[key.marks +
1]
image(
1,
seq(from = 0, to = n.levels),
matrix(power_max_mat.levels,
nrow = 1),
col = key.cols,
breaks = power_max_mat.levels,
useRaster = TRUE,
xaxt = "n",
yaxt = "n",
xlab = "",
ylab = ""
)
axis(
4,
lwd = lwd.axis,
at = key.marks,
labels = NA,
tck = 0.02,
tcl = (par()$usr[2] - par()$usr[1]) *
width - 0.04
)
mtext(
key.labels,
side = 4,
at = key.marks,
line = 0.5,
las = 2,
font = par()$font.axis,
cex = par()$cex.axis
)
box(lwd = lwd.axis)
}
return(results)
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.