Nothing
mlefit<-function(x, dist="weibull", npar=2, debias="none", optcontrol=NULL) {
## tz is required for MLEloglike and MLEsimplex calls now
default_tz=0
## sign is now required for MLEloglike call
default_sign=1
## check basic parameters of x
#if(class(x)!="data.frame") stop("FMbounds takes a structured dataframe input, use mleframe")
if(!is(x, "data.frame")) stop("mlefit takes a structured dataframe input, use mleframe")
if(ncol(x)!=3) {stop("mlefit takes a structured dataframe input, use mleframe")}
#if(x$right[1] != min(x$right[x$right != -1])) {stop("use mleframe to sort data")
xnames<-names(x)
if(xnames[1]!="left" || xnames[2]!="right"||xnames[3]!="qty") {
stop("mlefit takes a structured dataframe input, use mleframe") }
## test for any na's and stop, else testint below will be wrong
## It turns out that this code is general to all fitting methods:
if(tolower(dist) %in% c("weibull","weibull2p","weibull3p")){
fit_dist<-"weibull"
}else{
if(tolower(dist) %in% c("lnorm", "lognormal","lognormal2p", "lognormal3p")){
fit_dist<-"lnorm"
}else{
# if(!dist=="gumbel") {
## Note: only lslr contains experimental support for "gumbel"
stop(paste0("dist argument ", dist, "is not recognized for mle fitting"))
# }
}
}
## npar<-2 ## introducing 3p in dist argument will override any npar (or its default)
if(tolower(dist) %in% c("weibull3p", "lognormal3p")){
npar<-3
}
## initialize counts at zero, to be filled as found
Nf=0
Ns=0
Nd=0
Ni=0
## need this length information regardless of input object formation
failNDX<-which(x$right==x$left)
suspNDX<-which(x$right<0)
Nf_rows<-length(failNDX)
if(Nf_rows>0) {
Nf<-sum(x[failNDX,3])
}
Ns_rows<-length(suspNDX)
if(Ns_rows>0) {
Ns<-sum(x[suspNDX,3])
}
discoveryNDX<-which(x$left==0)
Nd_rows<-length(discoveryNDX)
if(Nd_rows>0) {
Nd<-sum(x[discoveryNDX,3])
}
testint<-x$right-x$left
intervalNDX<-which(testint>0)
interval<-x[intervalNDX,]
intervalsNDX<-which(interval$left>0)
Ni_rows<-length(intervalsNDX)
if(Ni_rows>0) {
Ni<-sum(interval[intervalsNDX,3])
}
## rebuild input vector from components, because this order is critical
fsiq<-rbind(x[failNDX,], x[suspNDX,], x[discoveryNDX,], interval[intervalsNDX,])
## Not sure what to place as restriction for C++ call
## if((Nf+Ni)<3) {stop("insufficient failure data")}
## now form the arguments for C++ call
## fsdi is the time vector to pass into C++
fsd<-NULL
if((Nf+Ns)>0) {
fsd<-fsiq$left[1:(Nf_rows + Ns_rows)]
}
if(Nd>0) {
fsd<-c(fsd,fsiq$right[(Nf_rows + Ns_rows + 1):(Nf_rows + Ns_rows + Nd_rows)])
}
if(Ni>0) {
fsdi<-c(fsd, fsiq$left[(Nf_rows + Ns_rows + Nd_rows + 1):nrow(fsiq)],
fsiq$right[(Nf_rows + Ns_rows + Nd_rows + 1):nrow(fsiq)])
}else{
fsdi<-fsd
}
q<-fsiq$qty
## third argument will be c(Nf,Ns,Nd,Ni)
N<-c(Nf_rows,Ns_rows,Nd_rows,Ni_rows)
mrr_fail_data<- c(rep(x[failNDX,1],x[failNDX,3]),
rep( x[discoveryNDX,2]/2, x[discoveryNDX,3]),
rep((interval[intervalsNDX,1]+(interval[intervalsNDX,2]-interval[intervalsNDX,1])/2), interval[intervalsNDX,3])
)
mrr_susp_data<-rep(x[suspNDX,1], x[suspNDX,3])
## establish distribution number and start parameters
if(fit_dist=="weibull"){
dist_num=1
## single failure data set with suspensions (only) uses simplistic weibayes for vstart
if(Nf==1 && Nd+Ni==0) {
weibayes_scale <-x[failNDX,1]+sum(x[suspNDX,1])
vstart<- c(1, weibayes_scale)
warning("single failure data set may be candidate for weibayes fitting")
}else{
# use of quick fit could have been circular here
# mrr_fit<-MRRw2p(mrr_fail_data, mrr_susp_data)
mrr_fit<-lslr(getPPP(mrr_fail_data, mrr_susp_data), abpval=FALSE)
shape<-mrr_fit[2]
scale<- mrr_fit[1]
vstart <- c(shape, scale)
}
}else{
if(fit_dist=="lnorm"){
dist_num=2
# use of quick fit could have been circular here
# mrr_fit<-MRRln2p(mrr_fail_data, mrr_susp_data)
mrr_fit<-lslr(getPPP(mrr_fail_data, mrr_susp_data), dist="lognormal", abpval=FALSE)
ml<- mrr_fit[1]
sdl<- mrr_fit[2]
# ml <- mean(log(data_est))
# sdl<- sd(log(data_est))
vstart<-c(ml,sdl)
}else{
stop("distribution not resolved for mle fitting")
}
}
## Optional optimization control list to be handled here
## vstart default as estimated
limit <-1e-6
maxit <-100
listout <-FALSE
# default optimization controls for 3p seek
num_points <-20
err_t0_limit <- 1e-6
err_gof_limit <- 1e-5
try_limit <- 100
if(length(optcontrol)>0) {
if(length(optcontrol$vstart>0)) {
vstart<-optcontrol$vstart
}
if(length(optcontrol$limit)>0) {
limit<-optcontrol$limit
}
if(length(optcontrol$maxit)>0) {
maxit<-optcontrol$maxit
}
if(length(optcontrol$listout)>0) {
listout<-optcontrol$listout
}
if(length(optcontrol$num_points>0)) {
num_points<-optcontrol$num_points
}
if(length(optcontrol$err_t0_limit>0)) {
err_t0_limit<-optcontrol$err_t0_limit
}
if(length(optcontrol$err_gof_limit>0)) {
err_gof_limit<-optcontrol$err_gof_limit
}
if(length(optcontrol$try_limit>0)) {
try_limit<-optcontrol$try_limit
}
}
pos<-1
Q<-sum(q)
for(j in seq(1,4)) {
if(N[j]>0) {
Q<-c(Q, sum(q[pos:(pos+N[j]-1)]))
pos<-pos+N[j]
}else{
Q<-c(Q, 0)
}
}
names(Q)<-c("n","fo", "s", "d", "i")
MLEclassList<-list(fsdi=fsdi,q=q,N=N,dist_num=dist_num)
## Test for successful log-likelihood calculation with given vstart
# LLtest<-.Call("MLEloglike",MLEclassList,vstart,default_sign, default_tz, package="WeibullR")
LLtest<-.Call(MLEloglike,MLEclassList,vstart, default_sign, default_tz)
## This should have failed as left with abremDebias call.
if(!is.finite(LLtest)) {
stop("Cannot start mle optimization with given parameters")
}
#ControlList<-list(dist_num=dist_num,limit=limit,maxit=maxit)
ControlList<-list(limit=limit,maxit=maxit)
## here is a good place to validate any debias argument (before more calculations begin)
if(debias!="none" && dist_num==1) {
if(tolower(debias)!="rba"&&tolower(debias)!="mean"&&tolower(debias)!="hrbu") {
stop("debias method not resolved")
}
}
## Handle the original 2 parameter case first
## if(tolower(dist)=="weibull" || tolower(dist)=="lognormal" ||tolower(dist)=="weibull2p" || tolower(dist)=="lognormal2p" ) {
if(npar==2) {
## listout control is passed as an integer to C++, this enables temporary change of status without losing input argument value
if(listout==TRUE) {
listout_int<-1
}else{
listout_int<-0
}
## tz inserted here with a default of zero
# result_of_simplex_call<-.Call("MLEsimplex",MLEclassList, ControlList, vstart, default_tz, listout_int, package="WeibullR")
result_of_simplex_call<-.Call(MLEsimplex,MLEclassList, ControlList, vstart, default_tz, listout_int)
## extract fit vector from result of call to enable finishing treatment of the outvec
if(listout==FALSE) {
resultvec<-result_of_simplex_call
}else{
resultvec<-result_of_simplex_call[[1]]
}
outvec<-resultvec[1:3]
if(resultvec[4]>0) {
warn<-"likelihood optimization did not converge"
attr(outvec,"warning")<-warn
}
if(dist_num == 1) {
names(outvec)<-c("Eta","Beta","LL")
if(debias!="none") {
if(debias!="rba"&&debias!="mean"&&debias!="hrbu") {
stop("debias method not resolved")
}
if(debias=="rba") {
outvec[2]<-outvec[2]*rba(Q[1]-Q[3], dist="weibull",basis="median")
}
if(debias=="mean") {
outvec[2]<-outvec[2]*rba(Q[1]-Q[3], dist="weibull",basis="mean")
}
if(debias=="hrbu") {
outvec[2]<-outvec[2]*hrbu(Q[1]-Q[3], Q[3])
}
# outvec[3]<-.Call("MLEloglike",MLEclassList,c(outvec[2],outvec[1]), default_sign, default_tz, package="WeibullR")
outvec[3]<-.Call(MLEloglike,MLEclassList,c(outvec[2],outvec[1]), default_sign, default_tz)
attr(outvec,"bias_adj")<-debias
}
}
if(dist_num == 2) {
names(outvec)<-c("Mulog","Sigmalog","LL")
if(debias!="none") {
outvec[2]<-outvec[2]*rba(Q[1]-Q[3], dist="lognormal")
if(debias!="rba") {
warning("rba has been applied to adjust lognormal")
debias="rba"
}
# outvec[3]<-.Call("MLEloglike",MLEclassList,c(outvec[1],outvec[2]), default_sign, default_tz, package="WeibullR")
outvec[3]<-.Call(MLEloglike,MLEclassList,c(outvec[1],outvec[2]), default_sign, default_tz)
attr(outvec,"bias_adj")<-debias
}
}
if(listout==TRUE) {
optDF<-as.data.frame(result_of_simplex_call[[2]])
if(dist_num == 1) {
names(optDF)<-c("beta_est", "eta_est", "negLL", "error")
}
if(dist_num == 2) {
names(optDF)<-c("mulog_est", "sigmalog_est", "negLL", "error")
}
}
## end of 2p code
}
## this section of code is specifically addressing 3p models
## if(tolower(dist)=="weibull3p" || tolower(dist)=="lognormal3p" ) {
if(npar==3) {
## For now, listout is passed as integer
## listout argument has different meaning for 3p models
listout_int<-0
## for now enter a default tz=0
# result_of_simplex_call<-.Call("MLEsimplex",MLEclassList, ControlList, vstart, default_tz, listout_int, package="WeibullR")
result_of_simplex_call<-.Call(MLEsimplex,MLEclassList, ControlList, vstart, default_tz, listout_int)
if(result_of_simplex_call[4]>0) {
stop("2p model does not converge")
}
## restore the meaning of listout
if(listout==TRUE) {
listout_int<-1
}else{
listout_int<-0
}
## set the 3p seek_control list
if(num_points<5) {
num_points<-5
warning("num_points specified too small, num_points=5 used")
}
seek_control<-list(num_points=num_points, err_t0_limit=err_t0_limit, err_gof_limit=err_gof_limit)
# establish the maximum limit for t0
## MLEmodel will treat convert any negative x$left-tz as zero
## Note discoveries continue to be discoveries until x$right-tz = zero
maxtz<-min(x$right[x$right != -1])
## set simplex control based on mlefit defaults or optcontrol items
#simplex_control<-list(limit=1e-5, maxit=100) # previously hard coded here
simplex_control<-list(limit=limit, maxit=maxit)
## This is the point to go to C++
## Will need to pass in MLEclassList, fit_dist and seek_control
## temporarily the output from the C++ call will be named out_object and immediately returned to R
## Note: vstart was defined before separating processing based on npar
# ret3p<-.Call("callMLE3p", MLEclassList, simplex_control, vstart, maxtz, seek_control, package="WeibullR")
ret3p<-.Call(callMLE3p, MLEclassList, simplex_control, vstart, maxtz, seek_control)
outvec<-ret3p$outvec
# ## must collect outvec and try_list from return of C++ call
# #outvec<-DF[max_ind,]
# # returning a single line dataframe causes later problems, needs to be a named vector
# outvec<-c(DF$P1[max_ind], DF$P2[max_ind], DF$tz[max_ind],DF$gof[max_ind])
# ##names(outvec)<-""
#
if(dist_num==1) {
names(outvec)<-c("Eta","Beta", "t0", "LL")
if(debias!="none") {
if(debias=="rba") {
outvec[2]<-outvec[2]*rba(Q[1]-Q[3], dist="weibull",basis="median")
}
if(debias=="mean") {
outvec[2]<-outvec[2]*rba(Q[1]-Q[3], dist="weibull",basis="mean")
}
if(debias=="hrbu") {
outvec[2]<-outvec[2]*hrbu(Q[1]-Q[3], Q[3])
}
# outvec[4]<-.Call("MLEloglike",MLEclassList,c(outvec[2],outvec[1]), default_sign, outvec[3], package="WeibullR")
outvec[4]<-.Call(MLEloglike,MLEclassList,c(outvec[2],outvec[1]), default_sign, outvec[3])
attr(outvec,"bias_adj")<-debias
}
}
if(dist_num == 2) {
names(outvec)<-c("Mulog","Sigmalog", "t0", "LL")
if(debias!="none") {
outvec[2]<-outvec[2]*rba(Q[1]-Q[3], dist="lognormal")
if(debias!="rba") {
warning("rba has been applied to adjust lognormal")
debias="rba"
}
# outvec[4]<-.Call("MLEloglike",MLEclassList,c(outvec[1],outvec[2]), default_sign, outvec[3],package="WeibullR")
outvec[4]<-.Call(MLEloglike,MLEclassList,c(outvec[1],outvec[2]), default_sign, outvec[3])
attr(outvec,"bias_adj")<-debias
}
}
if(ret3p$positive_runout == TRUE) {
attr(outvec, "message")<-"t0 cutoff at minimal change"
}
if(ret3p$negative_runout == TRUE) {
attr(outvec, "message")<-"optimum not found, t0 cutoff at minimal gof change"
}
if(ret3p$rebound == TRUE) {
attr(outvec, "rebound")<-ret3p$rebound_value
}
try_list<-ret3p$try_list
## end of 3p code
}
attr(outvec,"data_types")<-Q[-2]
## For 3p testing purposes listout code is limited to 2p results
if(npar==2) {
## the following applies to both 2p and 3p results
## it is used by LRbounds to simplify data_type determination for debias adjustment
## but often removed for normal use by attributes(fit_vec)$data_types<-NULL
if(listout==FALSE) {
out_object<-outvec
}else{
if(npar==2) out_object<-list(fit=outvec, opt=optDF)
if(npar==3) out_object<-list(fit=outvec, opt=try_list)
}
}else{
out_object<-outvec
}
out_object
## end function
}
Any scripts or data that you put into this service are public.
Add the following code to your website.
For more information on customizing the embed code, read Embedding Snippets.